首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the representability almost everywhere (a.e.) in C of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials A(z ? a)(z ? b)×(z ? c)?2 dz2. More precisely, we give a necessary and sufficient condition on the complex numbers a and b for these quadratic differentials to have finite critical trajectories. We also discuss all possible configurations of critical graphs.  相似文献   

2.
Let L=?Δ+V be a Schrödinger operator on ? d , d≥3. We assume that V is a nonnegative, compactly supported potential that belongs to L p (? d ), for some p>d /2. Let K t be the semigroup generated by ?L. We say that an L 1(? d )-function f belongs to the Hardy space \(H^{1}_{L}\) associated with L if sup?t>0|K t f| belongs to L 1(? d ). We prove that \(f\in H^{1}_{L}\) if and only if R j fL 1(? d ) for j=1,…,d, where R j =(?/? x j )L ?1/2 are the Riesz transforms associated with L.  相似文献   

3.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

4.
Let f: {-1, 1}n → [-1, 1] have degree d as a multilinear polynomial. It is well-known that the total influence of f is at most d. Aaronson and Ambainis asked whether the total L1 influence of f can also be bounded as a function of d. Ba?kurs and Bavarian answered this question in the affirmative, providing a bound of O(d3) for general functions and O(d2) for homogeneous functions. We improve on their results by providing a bound of d2 for general functions and O(d log d) for homogeneous functions. In addition, we prove a bound of d/(2p) + o(d) for monotone functions, and provide a matching example.  相似文献   

5.
Let Δ n,d (resp. Δ′ n,d ) be the simplicial complex and the facet ideal I n,d = (x 1... x d, x d?k+1... x 2d?k ,..., x n?d+1... x n ) (resp. J n,d = (x 1... x d , x d?k+1... x 2d?k ,..., x n?2d+2k+1... x n?d+2k , x n?d+k+1... x n x 1... x k)). When d ≥ 2k + 1, we give the exact formulas to compute the depth and Stanley depth of quotient rings S/J n,d and S/I n,d t for all t ≥ 1. When d = 2k, we compute the depth and Stanley depth of quotient rings S/Jn,d and S/I n,d , and give lower bounds for the depth and Stanley depth of quotient rings S/I n,d t for all t ≥ 1.  相似文献   

6.
Letd>1, and letα andβ be mixing ? d -actions by automorphisms of zero-dimensional compact abelian groupsX andY, respectively. By analyzing the homoclinic groups of certain sub-actions ofα andβ we prove that, if the restriction ofα to some subgroup Γ ? ? d of infinite index is expansive and has completely positive entropy, then every measurable factor mapφ: (X, α)→(Y, β) is almost everywhere equal to an affine map. The hypotheses of this result are automatically satisfied if the actionα contains an expansive automorphismα n ,n ∈ ? d , or ifα arises from a nonzero prime ideal in the ring of Laurent polynomials ind variables with coefficients in a finite prime field. Both these corollaries generalize the main theorem in [9]. In several examples we show that this kind of isomorphism rigidity breaks down if our hypotheses are weakened.  相似文献   

7.
Given E ? ? d , d ≥ 2, define
$D(E) \equiv \left\{ {{{x - y} \over {\left| {x - y} \right|}}:x,y \in E} \right\} \subset {S^{d - 1}}$
to be the set of directions determined by E. We prove that if the Hausdorff dimension of E is greater than d ? 1, then σ(D(E)) > 0, where σ denotes the surface measure on S d?1. In the process, we prove some tight upper and lower bounds for the maximal function associated with the Radon-Nikodym derivative of the natural measure on D. This result is sharp, since the conclusion fails to hold if E is a (d ? 1)-dimensional hyper-plane. This result can be viewed as a continuous analog of a recent result of Pach, Pinchasi, and Sharir ([22, 23]) on directions determined by finite subsets of ? d . We also discuss the case when the Hausdorff dimension of E is precisely d ? 1, where some interesting counter-examples have been obtained by Simon and Solomyak ([25]) in the planar case. In response to the conjecture stated in this paper, T. Orponen and T. Sahlsten ([20]) have recently proved that if the Hausdorff dimension of E equals d ? 1 and E is rectifiable and is not contained in a hyper-pane, the Lebesgue measure of the set of directions is still positive. Finally, we show that our continuous results can be used to recover and, in some cases, improve the exponents for the corresponding results in the discrete setting for large classes of finite point sets. In particular, we prove that a finite point set P ? ? d , d ≥ 3, satisfying a certain discrete energy condition (Definition 3.1) determines ? #P distinct directions.
  相似文献   

8.
In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on R d of the form A ε = ?divA(x, x/ε)?. The function A is assumed to be Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (A ε ? μ)?1, including one with a corrector, and for (?Δ) s/2(A ε ? μ)?1 in the operator norm on L 2(R d ) n . For s ≠ 0, we also give estimates of the rates of approximation.  相似文献   

9.
We say that a convex set K in ? d strictly separates the set A from the set B if A ? int(K) and B ? cl K = ø. The well-known Theorem of Kirchberger states the following. If A and B are finite sets in ? d with the property that for every T ? A?B of cardinality at most d + 2, there is a half space strictly separating T ? A and T ? B, then there is a half space strictly separating A and B. In short, we say that the strict separation number of the family of half spaces in ? d is d + 2.In this note we investigate the problem of strict separation of two finite sets by the family of positive homothetic (resp., similar) copies of a closed, convex set. We prove Kirchberger-type theorems for the family of positive homothets of planar convex sets and for the family of homothets of certain polyhedral sets. Moreover, we provide examples that show that, for certain convex sets, the family of positive homothets (resp., the family of similar copies) has a large strict separation number, in some cases, infinity. Finally, we examine how our results translate to the setting of non-strict separation.  相似文献   

10.
In this paper, we study the following stochastic Hamiltonian system in ?2d (a second order stochastic differential equation):
$$d{\dot X_t} = b({X_t},{\dot X_t})dt + \sigma ({X_t},{\dot X_t})d{W_t},({X_0},{\dot X_0}) = (x,v) \in \mathbb{R}^{2d},$$
where b(x; v) : ?2d → ?d and σ(x; v): ?2d → ?d ? ?d are two Borel measurable functions. We show that if σ is bounded and uniformly non-degenerate, and bH p 2/3,0 and ?σLp for some p > 2(2d+1), where H p α, β is the Bessel potential space with differentiability indices α in x and β in v, then the above stochastic equation admits a unique strong solution so that (x, v) ? Zt(x, v) := (Xt, ?t)(x, v) forms a stochastic homeomorphism flow, and (x, v) ? Zt(x, v) is weakly differentiable with ess.supx, v E(supt∈[0, T] |?Zt(x, v)|q) < ∞ for all q ? 1 and T ? 0. Moreover, we also show the uniqueness of probability measure-valued solutions for kinetic Fokker-Planck equations with rough coefficients by showing the well-posedness of the associated martingale problem and using the superposition principle established by Figalli (2008) and Trevisan (2016).
  相似文献   

11.
Let #K be a number of integer lattice points contained in a set K. In this paper we prove that for each d ∈ N there exists a constant C(d) depending on d only, such that for any origin-symmetric convex body K ? R d containing d linearly independent lattice points
$$\# K \leqslant C\left( d \right)\max \left( {\# \left( {K \cap H} \right)} \right)vo{l_d}{\left( K \right)^{\frac{{d - m}}{d}}},$$
where the maximum is taken over all m-dimensional subspaces of R d . We also prove that C(d) can be chosen asymptotically of order O(1) d d d?m . In particular, we have order O(1) d for hyperplane slices. Additionally, we show that if K is an unconditional convex body then C(d) can be chosen asymptotically of order O(d) d?m .
  相似文献   

12.
Let C be a smooth (irreducible) curve of degree d in ?2. Let ?2 ? ?5 be the Veronese embedding and let I C denote the homogeneous ideal of C on ?5. In this note we explicitly write down the minimal free resolution of I C for d ≥ 2.  相似文献   

13.
We consider a collection of n independent random subsets of [m] = {1, 2, . . . , m} that are uniformly distributed in the class of subsets of size d, and call any two subsets adjacent whenever they intersect. This adjacency relation defines a graph called the uniform random intersection graph and denoted by G n,m,d . We fix d = 2, 3, . . . and study when, as n,m → ∞, the graph G n,m,d contains a Hamilton cycle (the event denoted \( {G_{n,m,d}} \in \mathcal{H} \)). We show that \( {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = o(1) \) for d 2 nm ?1 ? lnm ? 2 ln lnm → ? and \( {\mathbf{P}}\left( {{G_{n,m,d}} \in \mathcal{H}} \right) = 1 - o(1) \) for 2nm ?1 ? lnm ? ln lnm → +.  相似文献   

14.
Let G = (V,A) be a digraph and k ≥ 1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γ k (G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs G B (n, d) and generalized Kautz digraphs G K (n, d) are good candidates for interconnection networks. Denote Δ k := (∑ j=0 k d j )?1. F. Tian and J. Xu showed that ?nΔ k ? γ k (G B (n, d)) ≤?n/d k? and ?nΔ k ? ≤ γ k (G K (n, d)) ≤ ?n/d k ?. In this paper, we prove that every generalized de Bruijn digraph G B (n, d) has the distance k-domination number ?nΔ k ? or ?nΔ k ?+1, and the distance k-domination number of every generalized Kautz digraph G K (n, d) bounded above by ?n/(d k?1+d k )?. Additionally, we present various sufficient conditions for γ k (G B (n, d)) = ?nΔ k ? and γ k (G K (n, d)) = ?nΔ k ?.  相似文献   

15.
The Hausdorff dimension of the graphs of the functions in Hölder and Besov spaces (in this case with integrability p≥1) on fractal d-sets is studied. Denoting by s∈(0,1] the smoothness parameter, the sharp upper bound min{d+1?s,d/s} is obtained. In particular, when passing from ds to d<s there is a change of behaviour from d+1?s to d/s which implies that even highly nonsmooth functions defined on cubes in ? n have not so rough graphs when restricted to, say, rarefied fractals.  相似文献   

16.
We show that for a parabolic R d -action on PSL(2,R) d /Γ, the cohomologies in degrees 1 through d ? 1 trivialize, and we give the obstructions to solving the degree-d coboundary equation, along with bounds on Sobolev norms of primitives. In previous papers, we have established these results for certain Anosov systems. This work extends the methods of those papers to systems that are not Anosov. The main new idea is defining special elements of representation spaces that allow us to modify the arguments from the previous papers. We discuss how to generalize this strategy to R d -systems coming from a product of Lie groups, as in the systems analyzed here.  相似文献   

17.
A Moore graph is a regular graph of degree k and diameter d with v vertices such that v ≤ 1 + k + k(k ? 1) + ... + k(k ? 1)d?1. It is known that a Moore graph of degree k ≥ 3 has diameter 2; i.e., it is strongly regular with parameters λ = 0, µ = 1, and v = k 2 + 1, where the degree k is equal to 3, 7, or 57. It is unknown whether there exists a Moore graph of degree k = 57. Aschbacher showed that a Moore graph with k = 57 is not a graph of rank 3. In this connection, we call a Moore graph with k = 57 the Aschbacher graph and investigate its automorphism group G without additional assumptions (earlier, it was assumed that G contains an involution).  相似文献   

18.
Consider two F q -subspaces A and B of a finite field, of the same size, and let A ?1 denote the set of inverses of the nonzero elements of A. The author proved that A ?1 can only be contained in A if either A is a subfield, or A is the set of trace zero elements in a quadratic extension of a field. Csajbók refined this to the following quantitative statement: if A ?1 ? B, then the bound |A ?1B| ≤ 2|B|/q ? 2 holds. He also gave examples showing that his bound is sharp for |B| ≤ q 3. Our main result is a proof of the stronger bound |A ?1B| ≤ |B|/q · (1 + O d (q ?1/2)), for |B| = q d with d > 3. We also classify all examples with |B| ≤ q 3 which attain equality or near-equality in Csajbók’s bound.  相似文献   

19.
We consider an operator Aε on L2(\({\mathbb{R}^{{d_1}}} \times {T^{{d_2}}}\)) (d1 is positive, while d2 can be zero) given by Aε = ?div A(ε?1x1,x2)?, where A is periodic in the first variable and smooth in a sense in the second. We present approximations for (Aε ? μ)?1 and ?(Aε ? μ)?1 (with appropriate μ) in the operator norm when ε is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.  相似文献   

20.
The Picard dimension \(\dim \mu\) of a signed Radon measure μ on the punctured closed unit ball 0?x|?≦?1 in the d-dimensional euclidean space with d?≧?2 is the cardinal number of the set of extremal rays of the cone of positive continuous distributional solutions u of the Schrödinger equation (???Δ?+?μ)u?=?0 on the punctured open unit ball 0?x|?x|?=?1. If the Green function of the above equation on 0?x|?Δ?+?μ)u?=?δ y , the Dirac measure supported by the point y, exists for every y in 0?x|?μ is referred to as being hyperbolic on 0?x|?γ is a radial Radon measure which is both positive and absolutely continuous with respect to the d-dimensional Lebesgue measure dx whose Radon–Nikodym density dγ(x)/dx is bounded by a positive constant multiple of |x|???2. The purpose of this paper is to show that the Picard dimensions of hyperbolic radial Radon measures μ are invariant under basic perturbations \(\gamma: \dim(\mu+\gamma)=\dim\mu\). Three applications of this invariance are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号