首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive Wavelet Solution to the Stokes Problem   总被引:2,自引:0,他引:2  
This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasciak is proved to be the simplest possible in an appropiate sense. Similar to the divergence operator, an exact application of its dual is shown; Second, based on these above observations, an adaptive wavelet algorithm for the Stokes problem is designed. Error analysis and computational complexity are given; Finally, since our algorithm is mainly to deal with an elliptic and positive definite operator equation, the last section is devoted to the Galerkin solution of an elliptic and positive definite equation. It turns out that the upper bound for error estimation may be improved.  相似文献   

2.
The paper is concerned with a construction of new spline-wavelet bases on the interval. The resulting bases generate multiresolution analyses on the unit interval with the desired number of vanishing wavelet moments for primal and dual wavelets. Both primal and dual wavelets have compact support. Inner wavelets are translated and dilated versions of well-known wavelets designed by Cohen, Daubechies, and Feauveau. Our objective is to construct interval spline-wavelet bases with the condition number which is close to the condition number of the spline wavelet bases on the real line, especially in the case of the cubic spline wavelets. We show that the constructed set of functions is indeed a Riesz basis for the space L 2 ([0, 1]) and for the Sobolev space H s ([0, 1]) for a certain range of s. Then we adapt the primal bases to the homogeneous Dirichlet boundary conditions of the first order and the dual bases to the complementary boundary conditions. Quantitative properties of the constructed bases are presented. Finally, we compare the efficiency of an adaptive wavelet scheme for several spline-wavelet bases and we show a superiority of our construction. Numerical examples are presented for the one-dimensional and two-dimensional Poisson equations where the solution has steep gradients.  相似文献   

3.
We apply a wavelet dual least squares method to a general sideways parabolic equation for determining surface temperature and surface heat flux. Connecting Meyer wavelet bases with a special project method dual least squares method, we can obtain a regularized solution. Meanwhile, order optimal error estimates between the approximate solution and exact solution are proved.  相似文献   

4.
We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accuracy and efficiency of the approach.  相似文献   

5.
In this paper we describe and analyze an algorithm for the fast computation of sparse wavelet coefficient arrays typically arising in adaptive wavelet solvers. The scheme improves on an earlier version from Dahmen et al. (Numer. Math. 86, 49–101, 2000) in several respects motivated by recent developments of adaptive wavelet schemes. The new structure of the scheme is shown to enhance its performance while a completely different approach to the error analysis accommodates the needs put forward by the above mentioned context of adaptive solvers. The results are illustrated by numerical experiments for one and two dimensional examples.  相似文献   

6.
The main focus of the present work is the inclusion of spatial adaptivity for the snapshot computation in the offline phase of model order reduction utilizing proper orthogonal decomposition (POD-MOR) for nonlinear parabolic evolution problems. We consider snapshots which live in different finite element spaces, which means in a fully discrete setting that the snapshots are vectors of different length. From a numerical point of view, this leads to the problem that the usual POD procedure which utilizes a singular value decomposition of the snapshot matrix, cannot be carried out. In order to overcome this problem, we here construct the POD model/basis using the eigensystem of the correlation matrix (snapshot Gramian), which is motivated from a continuous perspective and is set up explicitly, e.g., without the necessity of interpolating snapshots into a common finite element space. It is an advantage of this approach that the assembly of the matrix only requires the evaluation of inner products of snapshots in a common Hilbert space. This allows a great flexibility concerning the spatial discretization of the snapshots. The analysis for the error between the resulting POD solution and the true solution reveals that the accuracy of the reduced-order solution can be estimated by the spatial and temporal discretization error as well as the POD error. Finally, to illustrate the feasibility of our approach, we present a test case of the Cahn–Hilliard system utilizing h-adapted hierarchical meshes and two settings of a linear heat equation using nested and non-nested grids.  相似文献   

7.
We consider a method to efficiently evaluate in a real-time context an output based on the numerical solution of a partial differential equation depending on a large number of parameters. We state a result allowing to improve the computational performance of a three-step RB–ANOVA–RB method. This is a combination of the reduced basis (RB) method and the analysis of variations (ANOVA) expansion, aiming at compressing the parameter space without affecting the accuracy of the output. The idea of this method is to compute a first (coarse) RB approximation of the output of interest involving all the parameter components, but with a large tolerance on the a posteriori error estimate; then, we evaluate the ANOVA expansion of the output and freeze the least important parameter components; finally, considering a restricted model involving just the retained parameter components, we compute a second (fine) RB approximation with a smaller tolerance on the a posteriori error estimate. The fine RB approximation entails lower computational costs than the coarse one, because of the reduction of parameter dimensionality. Our result provides a criterion to avoid the computation of those terms in the ANOVA expansion that are related to the interaction between parameters in the bilinear form, thus making the RB–ANOVA–RB procedure computationally more feasible.  相似文献   

8.
We consider the problem of determining an unknown source, which depends only on the spatial variable, in a heat equation. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. For a reconstruction of the unknown source from measured data the dual least squares method generated by a family of Meyer wavelet subspaces is applied. An explicit relation between the truncation level of the wavelet expansion and the data error bound is found, under which the convergence result with the error estimate is obtained.  相似文献   

9.
Peter Benner  Martin Heß 《PAMM》2012,12(1):661-662
The Reduced Basis Method (RBM) generates low-order models of parametrized PDEs to allow for efficient evaluation of the input-output behaviour in many-query and real-time contexts. The RBM approach is decomposed into a time-consuming offline-phase, which generates a surrogate model and an online phase, which performs fast parameter evaluations. Rigorous and sharp a posteriori error estimators play a crucial role in the greedy process to generate the surrogate model and give bounds to the output quantities in the online phase. We show the theoretical framework in which the Reduced Basis Method is applied to Maxwell's equations arising from semiconductor interconnect structures and present first numerical results for model reduction in frequency domain. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The interior penalty methods using C~0 Lagrange elements(C~0 IPG) developed in the recent decade for the fourth order problems are an interesting topic at present. In this paper, we discuss the adaptive proporty of C~0 IPG method for the Helmholtz transmission eigenvalue problem. We give the a posteriori error indicators for primal and dual eigenfunctions, and prove their reliability and efficiency. We also give the a posteriori error indicator for eigenvalues and design a C~0 IPG adaptive algorithm. Numerical experiments show that this algorithm is efficient and can get the optimal convergence rate.  相似文献   

11.
We extend the multiscale finite element viscosity method for hyperbolic conservation laws developed in terms of hierarchical finite element bases to a (pre‐orthogonal spline‐)wavelet basis. Depending on an appropriate error criterion, the multiscale framework allows for a controlled adaptive resolution of discontinuities of the solution. The nonlinearity in the weak form is treated by solving a least‐squares data fitting problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

12.
Summary This paper is concerned with the characterization and invariant measures of certain reflected Brownian motions (RBM's) in polyhedral domains. The kind of RBM studied here behaves like d-dimensional Brownian motion with constant drift μ in the interior of a simple polyhedron and is instantaneously reflected at the boundary in directions that depend on the face that is hit. Under the assumption that the directions of reflection satisfy a certain skew symmetry condition first introduced in Harrison-Williams [9], it is shown that such an RBM can be characterized in terms of a family of submartingales and that it reaches non-smooth parts of the boundary with probability zero. In [9], a purely analytic problem associated with such an RBM was solved. Here the exponential form solution obtained in [9] is shown to be the density of an invariant measure for the RBM. Furthermore, if the density is integrable over the polyhedral state space, then it yields the unique stationary distribution for the RBM. In the proofs of these results, a key role is played by a dual process for the RBM and by results in [9] for reflected Brownian motions on smooth approximating domains. Research supported in part by NSF Grant DMS-8319562  相似文献   

13.
We present an “a posteriori” error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro‐to‐micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space, and the missing macroscopic data are recovered on‐the‐fly using the solutions of corresponding microscopic problems. We propose a new framework that allows to follow the concept of the (single‐scale) dual‐weighted residual method at the macroscopic level in order to derive a posteriori error estimates in quantities of interests for multiscale problems. Local error indicators, derived in the macroscopic domain, can be used for adaptive goal‐oriented mesh refinement. These error indicators rely only on available macroscopic and microscopic solutions. We further provide a detailed analysis of the data approximation error, including the quadrature errors. Numerical experiments confirm the efficiency of the adaptive method and the effectivity of our error estimates in the quantities of interest. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
Adaptive frame methods for elliptic operator equations   总被引:2,自引:0,他引:2  
This paper is concerned with the development of adaptive numerical methods for elliptic operator equations. We are especially interested in discretization schemes based on frames. The central objective is to derive an adaptive frame algorithm which is guaranteed to converge for a wide range of cases. As a core ingredient we use the concept of Gelfand frames which induces equivalences between smoothness norms and weighted sequence norms of frame coefficients. It turns out that this Gelfand characteristic of frames is closely related to their localization properties. We also give constructive examples of Gelfand wavelet frames on bounded domains. Finally, an application to the efficient adaptive computation of canonical dual frames is presented.  相似文献   

15.
The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov spaceB 3 p,q is proved under quite general assumpations. The adaptive nonlinear wavelet estimator with near-optimal convergence rate in a wide range of smoothness function classes is also constructed. The properties of the nonlinear wavelet estimator given for random design regression and only with bounded third order moment of the error can be compared with those of nonlinear wavelet estimator given in literature for equal-spaced fixed design regression with i.i.d. Gauss error. Project supported by Doctoral Programme Foundation, the National Natural Science Foundation of China (Grant No. 19871003) and Natural Science Fundation of Heilongjiang Province, China.  相似文献   

16.
We observe a stochastic process where a convolution product of an unknown function and a known function is corrupted by Gaussian noise. We wish to estimate the squared \mathbbL2{\mathbb{L}^2} -norm of the unknown function from the observations. To reach this goal, we develop adaptive estimators based on wavelet and thresholding. We prove that they achieve (near) optimal rates of convergence under the mean squared error over a wide range of smoothness classes.  相似文献   

17.
Given the wavelet expansion of a function v, a non-linear adaptive approximation of v is obtained by neglecting those coefficients whose size drops below a certain threshold. We propose several ways to define the threshold: all are based on the characterization of the local regularity of v (in a Sobolev or Besov scale) in terms of summability of properly defined subsets of its coefficients. A-priori estimates of the approximation error are derived. For the Haar system the asymptotic behavior of both the approximation error and the number of survived coefficients is thoroughly investigated for a class of functions having Hölder-type singularities.  相似文献   

18.
It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric masks and provide a positive answer under extra assumptions. We also identify a number of conditions that are necessary for the extension to dual (multi-) wavelet frames with any number of generators, and show that they imply that an extension with two pairs of wavelet systems is possible. Along the way we provide examples that demonstrate the extra flexibility in the extension to dual pairs of frames compared with the more popular extensions to tight frames.  相似文献   

19.
In the present work, we study the approximation of a distributed optimal control problem for a linear heat equation with model order reduction based on Proper Orthogonal Decomposition (POD-MOR). We show that snapshot location for control problems is crucial in model reduction. For the determination of the time instances (snapshot locations) we utilize an a-posteriori error control concept which is based on a reformulation of the optimality system of the underlying optimal control problem as a second order in time and fourth order in space elliptic system. Finally, we present a numerical test to illustrate our approach. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We prove a posteriori error estimates for a finite element method for systems of strictly hyperbolic conservation laws in one space dimension, and design corresponding adaptive methods. The proof of the a posteriori error estimates is based on a strong stability estimate for an associated dual problem, together with the Galerkin orthogonality of the finite-element method. The strong stability estimate uses the entropy condition for the system in an essential way. ©1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号