首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isocyanide complexes [Fe(η-C5H5)(CO)2CNR][PF6] and Cr(CO)5CNR (R = CH3, C6H11, C6H5) are conveniently prepared at ?50°C from carbonyl metallates, isothiocyanates, and phosgene. At room temperature Na[Fe(η-C5H5)(CO)2] reacts with isothiocyanates (11) to give the isocyanide bridged complexes [Fe2(η-C5H5)2(μ-CO)(μ-CNR)(CO)2].  相似文献   

2.
The oxidative cleavage of [Fe2(η-C5H5)2(CO)4-n(CNMe)n] (n=0−2) by 2AgX gives mononuclear products. It is shown to be a two-electron process in most solvents but a one-electron process in acetonitrile. The two-electron oxidations proceed by way of adducts such as [Fe2(η-C5H5)2(CO)(CNMe)(μ-CO){;μ-CN(Me)AgPPh3};]BF4 which are isolable when n = 2, detectable when n = 1 and postulatetd when n = 0. The one-electron process gives no adducts, and 1AgX cleaves all of the substrate to [Fe(η-C5H5)(CO)(L)(NCMe)]+ and [Fe(η-C5H5)(CO)(L)]. (L  CO or CNME). The latter may combine or react with added CHBr3 to give [Fe(η-C5H5)(CO)(L)Br]. The structure of [Fe(η-C5H5)(CO)2-(CNMe)]BF4 has been determined by X-ray diffraction.  相似文献   

3.
The protonated species [Fe2(η-C5H5)2(CO)2(η-CO){μ-CN(Me)H}]X, [Fe2(η-C5H5)2(CO)(CNMe)(μ-CO){μ-CN(Me)H}][X], and [Fe2(η-C5H5)2(CO)2{η-CN(Me)H}2][X]2 react with one equivalent of AgY. The Ag+ and one H+ act together as a two-electron oxidant. Silver metal is precipitated quantitatively and the substrates cleaved to give mono-nuclear products of the type (a) [Fe(η-C5H5)(CO)(L)X] and [Fe(η-C5H5(CO)(L)Y] or (b) Fe(η-C5H5(CO)(L)(CNMe)][X] (L = CO, CNMe). If X and Y are both coordinating anions such as NO3, I, or Br or the solvent is MeCN products of type (a) are usually obtained with X = Y = MeCN+ if acetonitrile is used as the solvent. However, if either X or Y is a non-coordinating anion such as BF4 or PF6 and methanol is the solvent, the products are usually those of type (b). When X = [p-MeC6H4SO3], both types of products are obtained in significant amounts. If two equivalents of Ph3P are added to the methanol solution of [Fe2(η-C5H5)2(CO)2{-CN(Me)H}2[BF6]2, no reaction takes place until the third equivalent of AgNO3 has been added. The products have been isolated and characterized by analysis and infrared spectroscopy. The previously unreported [Fe2(η-C5H5)2(CO)(CNMe)(η-CO){η-CN(Me)H}] X salts are described for X = BF4, PF6, Br · 2H2O, I · H2O, NO3 · 0.5H2O, and p-MeC6H4SO3.  相似文献   

4.
Addition of [C7H7][PF6] to iron, ruthenium or osmium alkynyl complexes has given eight cationic cycloheptatrienylvinylidene derivatives [M{C C(C7H7)R}(L)2 (η-C5H5)][PF6] (M = Fe, Ru or Os; R = Me, Pr, Ph or C6F5; L = PPh3, L2 = dppm or dppe; but not all combinations). With Fe(C2Ph)(CO)2(η-C5H5), only [Fe(CO)2(thf)(η-C5H5)][PF6] was obtained. Reactions of the new complexes are characterised by loss of the C7H7 group. The NMR spectra and FAB mass spectra are described in detail.  相似文献   

5.
The reactions of equimolar amounts of [Fe2(η-C5H5)2(CO)2(CNMe){CN(Me)H}]X and AgY in methanol results in a two-electron oxidation of [Fe2(η-C5H5)2(CO)2(CNMe)2] to give [Fe(η-C5H5)(CO)(CNMe)2]BF4 when either X or Y are the non-coordinating anion BF4, but [Fe(η-C5H5(CO)(CNMe)X] and [Fe(η-C5H5(CO)(CNMe)Y] when both X and Y are potentially coordinating anions such as NO3, Br or I.  相似文献   

6.
The reactions of [Fe2(η-C5H5)2(CO)2(L)(CNMe)] (L  CO or CNME) with HgX2 (X  Cl, Br or I) give [Fe(η-C5H5)(CO)2HgX] and [Fe(η-C5H5)(L)-(CNMe)X] as the sole products in ca. quantitative yields; this is consistent with the previously proposed mechanism for the reactions of electrophiles with polynuclear metal carbonyl derivatives.  相似文献   

7.
The reactions of [Co(η-C5H5)(L)I2] with Na[S2CNR2] (R = alkyl or phenyl) give [Co(η-C5H5)(I)(S2CNR2)] (I) when L = CO and [Co(η-C5H5)(L)(S2CNR2)]I (II) when L is a tertiary phosphine, phosphite or stibine, or organo-isocyanide ligand. In similar reactions [Co(η-C5H5)(CO)(C3F7)I] gives [Co(η-C5H5)(C3F7)(S2CNMe2)] and [Mn(η-MeC5H4)(CO)2(NO)]PF6 forms [Mn(η-MeC5H4)(NO)(S2CNR2)]. The iodide ligands in I may be displaced by L, to give II, or by other ligands such as [CN]?, [NCS]?, H2O or pyridine whilst SnCl2 converts it to SnCl2I. The iodide counter-anion in II may be replaced by others to give [BPh4]?, [Co(CO)4]? or [NO3]? salts. However [CN]? acts differently and displaces (PhO)3P from [Co(η-C5H5){P(OPh)3}(S2CNMe)]I to give [Co(η-C5H5)(CN)(S2CNMe2)] which may be alkylated reversibly by MeI and irreversibly by MeSO3F to [Co(η-C5H5)(CNMe)(S2CNMe2)]+ salts. Conductivity measurements suggest that solutions of I in donor solvents are partially ionized with the formation of [Co(η-C5H5)(solvent)(S2CNR2)]+ I? species. The IR and 1H NMR spectra of the various complexes are reported. They are consistent with pseudo-octahedral “pianostool” molecular structures in which the bidentate dithiocarbamate ligands are coordinated to the metal atoms through both sulphur atoms.  相似文献   

8.
《Polyhedron》1987,6(8):1703-1705
The acetone complex [Fe(CO)2(Me2CO)(η5-C5H5)][PF6] reacts with L (L = H2NNHCSNH2, cy-C5H10CNNHCSNH2, or R′R″CNNHCSNH2 where R′ = R″ = Me; R′ = H, R″ = Ph; R′ = H, R″ = p-NO2Ph; R′ = p-MePh) in refluxing trichloromethane to give the new complexes [Fe(CO)2L(η5-C5H5)][PF6]. The complexes are clearly coordinated through the sulphur atom since the thiosemicarbazide complex reacts with benzaldehyde to afford the corresponding thiosemicarbazone compound.  相似文献   

9.
The cationic ruthenium complexes [(η5-C5H5)Ru(Ph2PCH2CH2PPh2)L]PF6 (L=olefin, CO, pyridine or acetonitrile) have been prepared by treatment of (η5-C5H5)Ru(Ph2PCH2CH2PPh2)Cl with L and NH4PF6 in methanol of 20°C.  相似文献   

10.
Reaction of [WI(CO)27-C7H7)] with dppm (dppm = Ph2PCH2PPh2) or dppe (dppe = Ph2PCH2CH2PPh2) gives the trihaptocycloheptatrienyl complexes [WI(CO)2(L-L)(η3-C7H7)] [L-L = dppm, (A1); L-L = dppe (A2)]. The complex A1 reacts with NH4PF6 to give the unidentate biphosphine complex [W(CO)2(dppm-P)(η7-C7H7)][PF6] (B) which yields [W(CO)(dppm)(η7-C7H7)][PF6] (C) on reaction with Me3NO·2H2O. Substitution of a carbonyl ligand in [W(CO)37-C7H7)][PF6] with the organometallic phosphine ligand [Mo(CO)2(dppe-P)(η7-C7H7)][PF6] yields the heterobimetallic [{W(CO)27-C7H7)}(μ-dppe){Mo(CO)27-C7H7)}x][PF6]2 (D).  相似文献   

11.
Cationic [Ru(η5-C5H5)(CH3CN)3]+ complex, tris(acetonitrile)(cyclopentadienyl)ruthenium(II), gives rise to a very rich organometallic chemistry. Combined with diimine ligands, and 1,10-phenanthroline in particular, this system efficiently catalyzes diazo decomposition processes to generate metal-carbenes which undergo a series of original transformations in the presence of Lewis basic substrates. Herein, syntheses and characterizations of [CpRu(Phen)(L)] complexes with (large) lipophilic non-coordinating (PF6 and BArF) and coordinating TRISPHAT-N anions are reported. Complex [CpRu(η6-naphthalene)][BArF] ( [1][BArF] ) is readily accessible, in high yield, by direct counterion exchange between [1][PF6] and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) salts. Ligand exchange of [1][BArF] in acetonitrile generated stable [Ru(η5-C5H5)(CH3CN)3][BArF] ( [2][BArF] ) complex in high yield. Then, the desired [CpRu(Phen)(CH3CN)] ( [3] ) complexes were obtained from either the [1] or [2] complex in the presence of the 1,10-phenanthroline as ligand. For characterization and comparison purposes, the anionic hemilabile ligand TRISPHAT−N (TTN) was introduced on the ruthenium center, from the complex [3][PF6] , to quantitatively generate the desired complex [CpRu(Phen)(TTN)] ( [4] ) by displacement of the remaining acetonitrile ligand and of the PF6 anion. Solid state structures of complexes [1][BArF] , [2][BArF] , [3][BArF] , [3][PF6] and [4] were determined by X-ray diffraction studies and are discussed herein.  相似文献   

12.
Visible light irradiation of cation [(η5-C6H7)Fe(η-C6H6)]+ (1+) in acetonitrile results in substitution of the benzene ligand giving the labile acetonitrile derivative [(η5-C6H7)Fe(MeCN)3]+ (2a+). The stable isonitrile and phosphite complexes [(η5-C6H7)FeL3]+ [L = tBuNC (2b+), P(OMe)3 (2c+), P(OEt)3 (2d+)] were obtained by reaction of 1 with L in MeCN. The structures of 2cPF6, [CpFe(η-C6H6)]PF6 (3PF6), and Cp1Fe(η-C6H6)]PF6 (4PF6) were determined by X-ray diffraction.The redox activity of the cyclohexadienyl complexes 1+, 2b+?2d+ has been investigated by electrochemical techniques and compared with that of the related cyclopentadienyl complexes 3+ and 4+. DFT calculations of the redox potentials and the respective geometrical changes were performed.Variable temperature Mössbauer (ME) spectroscopy has elucidated the relationship between structure and formal oxidation state of the iron atom in these complexes. In the case of 3+ an unexpected pair of crystallographic changes has been observed and interpreted in terms of both a second and first order phase transition. The mean-square-amplitude-of-vibration of the metal atom has been compared between the ME and X-ray data. ME measurements in a magnetic field have shown that in 4+ the quadrupole splitting is positive as it is in ferrocene.  相似文献   

13.
Preparation and Properties of New Cationic Dienyl-isonitrile-dicarbonyl Complexes of Iron and Ruthenium The hydride abstraction from the η4-diene isonitrile metal dicarbonyls M(η4-dien)(CNR)(CO)2 (M = Fe, Ru; dien = C6H8 cyclohexadiene-1.3; C7H10 cycloheptadiene-1.3; R = Me, Et) with [Ph3C]BF4 lead to the η5-dienyl isonitrile dicarbonyl metal cations [M(η5-dienyl)(CNR)(CO)2]+ [dienyl = cyclohexa-2.4-dien-1-yl (C6H7), cyclohepta-2.4-dien-1-yl (C7H9)]. [Fe(η5? C8H9)(CNMe)(CO)2]+ (C8H9 = bicyclo[5.1.0]octa-3.5-dien-2-yl) is formed by protonation of Fe(η4? C8H8)(CNMe)(CO)2 (C8H8 = COT) under valency isomerization. The two cations [Fe(η5? C7H9)(CNMe)(CO)2]+ and [Fe(η5? C8H9)(CNMe)(CO)2]+ can be deprotonated with NEt3 to the neutral cycloheptatriene respectively COT complexes Fe(η4? C7H8)(CNMe)(CO)2 and Fe(η4? C8H8)(CNMe)(CO)2. The temperature dependent 13C-NMR spectra of [Fe(η5? C7H9)(CNMe)(CO)2]+ and [Ru(η5? C6H7)(CNMe)(CO)2]+ show the fluctional behaviour of these cations in solution. At low temperatures one CO group occupies the apical position of a square pyramid whereas the isonitrile ligand, the other CO group and the dienyl part are in the basal positions. The ΔG values of the CP exchange points out a higher activation energy as in the corresponding η4-diene metal complexes.  相似文献   

14.
Synthetic routes to the cationic complexes [η5-C9H7Fe(CO)[2L]+, (L = CO, phosphine, phosphite, nitrile, pyridine) have been investigated. The most versatile method is oxidation of the dimer [η5-C9h7Fe(CO)2]2 with ferricinium ion. in the presence of the appropriate ligand. [η5-C9H7Fe(CO)3]+ is best prepared by oxidation of the dimer with Ph3CBF4. This tricarbonyl cation readily loses one CO group on reactiom with phosphines and P(OCH3). The acentonitrile ligand [η5-C9H7Fe(CO)2CH3CN]+ can also be replaced bny phosphines. Finally, reactions of η5-C9H7Fe(CO)2X, (X = Br, I) with phosphines also yield cationic products isolatedas PF6 salts.  相似文献   

15.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

16.
The reaction of [(η5-C9H7)Ru(η2-dppe)Cl] (1) with monodentate nitriles, (L) in the presence of NH4PF6 afforded the complexes [(η5-C9H7)Ru(η2-dppe)(L)]PF6, with L?=?CH3CN (2a), CH3CH=CHCN (2b), NCC6H4CN (2c), C6H5CH2CN (2d), respectively. However, reaction of 1 with NH4PF6 in methanol yielded an amine complex of the type [(η5-C9H7) Ru(η2-dppe)(NH3)]PF6 (3a). The complexes were fully characterized by spectroscopy and analytical data. The molecular structures of the complexes [(η5-C9H7)Ru(η2-dppe) (CH3CN)]PF6 (2a) and [(η5-C9H7)Ru(η2-dppe)(NH3)]PF6 (3a) have been determined by single crystal X-ray analyses.  相似文献   

17.
Halogens, X2, and HgY2 (X = Cl, Br, I; Y = X, F, NO3, BF4) cleave the metalmetal bonds in [Fe2(η-C5H5)2(CO)4−n(CNMe)n] complexes (n = 0–4). Typically, e.g., when n = 2, X2 electrophiles give [Fe(η-C5H5)(CO)(CNMe)X] (a) and [Fe(η-C5H5)(CO)(CNMe)2]X (b) in relative yields which depend on X, the reaction solvent and n, but HgY2 give equimolar amounts of [Fe(η-C5H5)(CNMe)2Y] (c and [Fe(η-C5H5)(CO)2HgY] only. Hg(CN)2 reacts more slowly than other HgY2, and [Hg(PPh3)2I2] does not react at all. It is suggested that the reactions which give rise to products of type (a), (b) or (c) are all two-electron oxidation which proceed by way of adducts containing μ-CA → X2 or μ-CA → HgX2 groups (Ca = CO or CNMe). One of these adducts has been isolated, namely [Fe2(η-C5H5)2(CNMe)2{μ-CN(Me)HgCl2}2] · CHCl3.  相似文献   

18.
The reaction between [η5-C5H5)Fe(CO)2I] (I) and 1 equivalent of L (group 15 donor ligand) in the presence of catalysts (e.g. Pd/CaCO3, PdO, [η5-C5H5)Fe(CO)2]2 (II)) yields [η5-C5H5)Fe(CO)(L)I] (phosphines, diphosphines, phosphite), [η5-C5H5)Fe(CO)2L]I (phosphines) and [η5-C5H5)Fe(CO)(LL)]I (diphosphines). [η5-C5H5)Fe(CO)2L]I can be converted into [η5-C5H5)Fe(CO)(L)I] in the presence of II. The reaction between [η5-C5H5)Fe(CO)(PMePh2)I] or [η5-C5H5)Fe(CO)2(PMePh2)]I and PMePh2 is also catalysed by II and yields in both instances [η5-C5H5)Fe(CO)(PMePh2)2]I. In the series of catalysed reactions the displacement sequence was found to be PMePh2 > I > CO.  相似文献   

19.
Various di- and poly-nuclear transition metal complexes have been investigated as catalysts for the metal carbonyl substitution reaction. The complexes [{(η5-C5H4R)Fe(CO)2} 2] (R = H, Me, CO2Me, OMe, O(CH2)4OH) and [{(η5-C5H5)-Ru(CO)2} 2] are active catalysts for a range of substitution reactions including the probe reaction [Fe(CO)4(CNBut)] + ButNC → [Fe(CO)3(CNBut)2] + CO. [{(η5-C5Me5)Fe(CO)2}2] is catalytically active only on irradiation with visible light. For [{η5-C5H5)Fe(CO)2}2] and a range ofisocyanides RNC ( R = But, C6H5CH2, 2,6-Me2C6H3), catalyst modification by substitution with isocyanide is a major factor influencing the degree of the catalytic effects observed, e.g. [{(η5-C5H5)Fe(CO)(CNBut)}2] is approximately 35 times as active as [(η5-C5H5)2FE2(CO)3(CNBut)] for the [Fe(CO)4(CNBut)] → [Fe(CO)3(CNBut)2] conversion. Mechanistic studies on this system suggest that the catalytic substitution step probably involves a rapid intermolecular attack of isonitrile, possibly on a labile catalyst-substrate radical intermediate such as {[Fe(CO)4(CNR)][(η5-C5H5)Fe(CO)2]}; or on a reactive radical cation such as [Fe(CO)4(CNR)]+ generated via electron transfer between the substrate and the catalyst. Other transition metal complexes which also catalyze the substitution of CO by isocyanide in [Fe(CO)4(CNR)] (and [M(CO)6] (M = Cr, Mo, W), [Mn2(CO)10], [Re2(CO)10]) include [Ru3(CO)12], [H4Ru4(CO)12], [M4(CO)12] (M = Co, Ir) and [Co2(CO)8]. These reactions conform to the general mechanistic patterns established for [{(η5-C5H5)Fe(CO)2}2], suggesting a similar mechanism. A range of materials, notably PtO2, PdO and Pd/C, act as promoters for the homogeneous di- and poly-nuclear transition metal catalysts, and can even be used to induce activity in normally inactive dimer and cluster complexes e.g. [Os3(CO)12]. This promotion is attributed to at least three possible effects: the removal of catalyst inhibitors, a catalyzed substitution of the homogeneous catalyst partner, and a possible homogeneous-heterogeneous interaction which promotes the formation of catalytic intermediates.  相似文献   

20.
New series of half-sandwich ruthenium(II) complexes supported by a group of bidentate pyridylpyrazole and pyridylimidazole ligands [(η6-C6H6)Ru(L2)Cl][PF6] (1), [(η6-C6H6)Ru(HL3)Cl][PF6] (2), [(η6-C6H6)Ru(L4)Cl][PF6] (3), and [(η6-C6H6)Ru(HL5)Cl][PF6] (4) [L2, 2-[3-(4-chlorophenyl)pyrazol-1-ylmethyl]pyridine; HL3, 3-(2-pyridyl)pyrazole; L4, 1-benzyl-[3-(2′-pyridyl)]pyrazole; HL5, 2-(1-imidazol-2-yl)pyridine] are reported. The molecular structures of 1-4 both in the solid state by X-ray crystallography and in solution using 1H NMR spectroscopy have been elucidated. Further, the crystal packing in the complexes is stabilized by C-H?X (X = Cl and π), N-H?Cl, and π-π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号