首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dithiocarbene complex W(CO)5[C(SCH3)2 reacts with tertiary phosphines, PPh2CH3, PPh(CH3)2, P(C2H5)3 and P(OCH3)3 to form the phosphorane complexes W(CO)5[CH3S)2C-PR3] and with HPPh2 to form the phosphine complex W(CO)5[PPh2[CH(SCH3)2]. Kinetic studies of both types of reactions show that their rates are first order each in W(CO)5[C(SCH3)2] and in the phosphorus ligand. A mechanism involving rate determining phosphorus attack at the carbene carbon followed by rapid rearrangement to the product is consistent with this rate law. Rate constants for the reactions increase with increasing nucleophilicities of the phosphines: P(OCH3)3 < PPh2H < PPh2CH3 ? PPh(CH3)2 < P(C2H5)3. The ΔH values decrease (P(OCH3)3 > PPh2H > PPh2(CH3) > PPh(CH3)2 > P(C2H5)3) as the nucleophilicities of the phosphines increase. The ΔS values (≈-30 e.u.) remain essentially constant for all the reactions. The cyclic dithiorcarbenes W(CO)5[CS(CH2)nS], wheren- 3 or 4, react with PPh2(CH3) to form the cyclic phosphorane complexes, W(CO)5[S(CH2)nSC-PPh2(CH3)]. The 6- and 7- membered cyclic dithiocarbenes also react with PPh2H to form the phosphine complexes, W(CO)5 {PPh2- [CS(CH2)nS(H)]}.  相似文献   

2.
Oxo-titanium and -zirconium diphosphines [(η-C5H5)2M(CH2PPh2)]2 (with M = Ti, Zr) were synthesized and treated with [Rh(CO)2Cl]2 to give the heterobimetallic d0-d8 species O[(η-C5H5)2M(CH2PPh2)]2Rh(CO)Cl.  相似文献   

3.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

4.
RuHCl(CO)2(PPh3)2 reacts with ethylene under mild conditions (25 psi, 80°C) to yield a propionyl derivative RuCl(C[O]C2H5)(CO)(PPh3)2 which is believed to be coordinatively unsaturated. Unlike the acetyl analogue, RuCl[C[O]C2H5(CO)-(PPh3)2 does not isomerize to RuCl(C2H5)(CO)2(PPh3)2 in solution. Under one atmosphere of carbon monoxide, RuCl(C[O]C2H5(CO)(PPh3)2 exists in equilibrium with two species believed to be RuCl(C[O]C2H5)(CO)2(PPh3)2 and [Ru(C[O]C2H5)(CO)3(PPh3)2]Cl. RuCl(C[O]C2H5)(CO)(PPh3)2 reacts with CO/ AgClO4 to give mer-[Ru(C[O]C2H5)(CO)3(PPh3)2]ClO4, p-tolylisocyanide (RNC) and NaClO4 to give cis-[Ru(C[O]C2H5)(CO)(CNR)2(PPh3)2ClO4, and hydrochloric acid to yield the hydroxycarbene complex, RuCl2(CO)(C[OH]C2H5)(PPh3)2.  相似文献   

5.
The reactions of the halogenoalkyl compounds [Cp(CO)3W{(CH2)nX}] (Cp = η5-C5H5; n = 3-5; X = Br, I) and [Cp(CO)2(PPhMe2)Mo{(CH2)3Br}] with the nucleophiles Z = CN and gave compounds of the type [Cp(CO)3W{(CH2)nZ}] for the tungsten compounds, whilst cyclic carbene compounds were obtained from the reactions of the molybdenum compound. The reactions of [Cp(CO)3W{(CH2)nBr}] (n = 3, 4) and [Cp(CO)2(PPhMe2)Mo{(CH2)3Br}] with gave [Cp(CO)3W{(CH2)nONO2}] and [Cp(CO)2(PPhMe2)Mo{(CH2)3ONO2}], respectively. The reaction of [Cp(CO)3W{(CH2)nBr}] with AgNO2 gave [Cp(CO)3W{(CH2)nNO2}]. In the solid state the complex [Cp(CO)3W{(CH2)3NO2}] crystallizes in a distorted square pyramidal geometry. In this molecule the nitropropyl chain deviates from the ideal, all-trans geometry as a result of short, non-hydrogen intermolecular N-O?O-N contacts. The reactions of the heterobimetallic compounds [Cp(CO)3W{(CH2)3}MLy] {MLy = Mo(CO)3Cp, Mo(CO)3Cp and Mo(CO)2(PMe3)Cp; Cp = η5-C5(CH3)5} with PPh3 and CO were found to be totally metalloselective, with the ligand always attacking the metal site predicted by the reactions of the corresponding monometallic analogues above with nucleophiles. Thus the compounds [Cp(CO)3W{(CH2)3}C(O)MLz] {MLz = Mo(CO)2YCp, Mo(CO)2YCp and Mo(CO)Y(PMe3)Cp; Y = PPh3 or CO} were obtained. Similarly, the reaction of [Cp(CO)2Fe{(CH2)3}Mo(CO)2(PMe3)Cp] with CO gave only [Cp(CO)2Fe{(CH2)3C(O)}Mo(CO)2(PMe3)Cp]. Hydrolysis of the bimetallic compound, [Cp(CO)3W(CH2)3C(O)Mo(CO)(PPh3)(PMe3)Cp], gave the carboxypropyl compound [Cp(CO)3W{(CH2)3COOH}]. Thermolysis of the compound [Cp(CO)2Fe(CH2)3Mo(CO)3(PMe3)Cp] gave cyclopropane and propene, indicating that β-elimination and reductive processes had taken place.  相似文献   

6.
Starting from [M(CO)6], seven-coordinated complexes of tungsten and molybdenum containing the facially coordinating ligands HC(pz)3 (1) and MeC(CH2PPh2)3 (2) were obtained in a two-step reaction sequence. The complexes have a 4:3 piano stool geometry with almost perfect CS symmetry in the crystal. In solution, they show the typical fluxional behavior for seven-coordinated complexes even at low temperature. Complete oxidative decarbonylation occurs when [HC(pz)3Mo(CO)3] (4) or [MeC(CH2PPh2)3Mo(CO)3] (6) are treated with an excess of I2 or Br2.  相似文献   

7.
The asymmetric PCP pincer ligand [C6H4-1-(CH2PPh2)-3-(CH(CH3)PPh2)] (4) has been synthesized in a facile manner in three simple steps in high yield. Metallation of PCP pincer ligand (4) with [Pd(COD)Cl2] affords complex [PdCl{C6H3-2-(CH2PPh2)-6-(CH(CH3)PPh2)}] (7) in good yield.  相似文献   

8.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

9.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

10.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

11.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

12.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

13.
The Raman and infrared spectra (4000200 cm?1) of (C4H4P)Mn(CO)3 and (C4D4P)Mn(CO)3, and of [C4H2(CH3)2P]Mn(CO)3 and [C4D2(CH3)2P]Mn(CO)3 in the liquid and solid states (10–400 K) have been investigated. A complete vibrational assignment is proposed and valence force fields of the (C5H5) and (C4H4P) cycles are compared. From these results, it is clearly shown that the (C4H4P) rings are more electrophilic and weaker π-electron donors than (C5H5) rings, this is in agreement with their chemical behavior.  相似文献   

14.
Reactions of [Ru(PPh3)3Cl2] with 2-(benzylimino-methyl)-4-R-phenol (HRL, R = H, Cl, Br and OMe) in boiling methanol in presence of triethylamine afford ruthenium(II) complexes of general formula [Ru(RL)(PPh3)2(CO)Cl] in 57-64% yield. Microanalysis, spectroscopic (infrared, electronic and NMR) and cyclic voltammetric measurements have been used for the characterization of the complexes. Crystal structures of two representative complexes have been determined by X-ray crystallography. The carbonyl, the chloride, the N,O-donor RL and the two mutually trans PPh3 molecules assemble a distorted octahedral CClNOP2 coordination sphere around the metal centre in each complex. The complexes display the Ru(II) → Ru(III) oxidation in the potential range 0.62-1.16 V (vs. Ag/AgCl).  相似文献   

15.
Reaction of lithiated bis(diphenylphosphino)amine, [(C6H5)2P]2N? Li+, with K2PtCl4 or PdCl2 (in the presence of trimethylphosphine) yields the homoleptic bis[bis(diphenylphosphino)amide] complexes I and II, respectively. With NiCl2/(CH3)3P the chloro-bridged dinuclear complex III is obtained. A symmetrical bonding of the Ph2P-·N-·PPh2 anion to the metal through the phosphorus atoms is indicated for these diamagnetic, deep-yellow (I, II) or red (III) complexes by 31P NMR spectroscopy (J(PtP) 1812 Hz for I). I and II are dissolved in CF3COOH with protonation at the nitrogen atoms to give bis(diphenylphosphino)amine complexes IV and V, respectively (J(PtP) 2080 Hz for IV). IV and V are 1:2 electrolytes in CH3NO2. Methylation of I-III with CH3OSO2F leads to the bis(diphenylphos-phino)methylamine complexes VI-VIII, of which the palladium compound VII has been structurally characterized by single crystal X-ray diffraction. VII contains a planar CNP2PdP2NC skeleton and is thus based on planar ligand arrays both at Pd and at the two N atoms.  相似文献   

16.
Two novel heterometallic trinuclear incomplete cubane-like clusters [(CH3CH2)4N][{M2CuS4}(edt)2(PPh3)] (M = Mo, W) have been synthesized by reaction of [(CH3CH2)4N]2[M2S4(edt)2] (M = Mo, W) with Cu(PPh3)2(dtp) [where edt is 1,2-ethane-dithiolato ligand, dtp is S2P(OCH2CH3)2]. The two crystals are isomorphous in space group P1 (No. 1). The unit cell contains two independent molecules, but the two discrete anions have the same orientation for the PPh3 ligands along one axis so the space group is undoubtedly non-centrosymmetric. The discrete anion contains two edt ligands and one PPh3 ligand attached to one incomplete cubane-like cluster core {M2CuS4}3+ (M = Mo, W). The bond lengths of Mo---Mo[W---W] and the two Mo---Cu[W-Cu] are 2.852(2)[2.844(1)], 2.802(2)[2.765(3)], 2.760(2)[2.762(3)] Å, respectively. The M 2S4(edt)2 (M = Mo, W) moiety remains almost unchanged, except that for the compound 1 the Mo=S double bond length elongates from av. 2.10 to av. 2.165 Å. The title clusters provide a new type of unsymmetric μ2-bridging sulphido ligand. The incomplete cubane-like cluster core {Mo2CuS4}3+ of compound 1 is distorted because the two Cu---μ2---S bond lengths are significantly different (2.313 Å and 2.409 Å), but the core {W2CuS4}3+ of compound 2 has approximately Cs symmetry. The IR spectra of the two title clusters and two starting materials are assigned.  相似文献   

17.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

18.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

19.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

20.
The complex [NiCl2(PMe3)2] reacts with one equivalent of mg(CH2CMe3)Cl to yield the monoalkyl derivative trans-[Ni(CH2CMe3)Cl(PMe3)2], which can be carbonylated at room temperature and pressure to afford the acyl [Ni(COCH2CMe3)Cl(PMe3)2]. Other related alkyl and acyl complexes of composition [Ni(R)(NCS)(PMe3)2] (R = CH2CMe3, COCH2CMe3) and [Ni(R)(η-C5H5)L] (L = PMe3, R = CH2CMe3, COCH2CMe3; L = PPh3, R = CH2CMe2Ph) have been similarly prepared. Dialkyl derivatives [NiR2(dmpe)] (R = CH2SiMe3, CH2CMe2Ph; dmpe = 1,2-bis(dimethylphosphine)ethane, Me2PCH2 CH2PMe2) have been obtained by phosphine replacement of the labile pyridine and NNN′N′-tetramethylethylenediamine ligands in the corresponding [Ni(CH2SiMe3)2(py)2] and [Ni(CH2CMe2Ph)2(tmen)] complexes. A single-crystal X-ray determination carried out on the previously reported trimethylphosphine derivative [Ni(CH2SiMe3)2(PMe3)2] shows the complex belongs to the orthorhombic space group Pbcn, with a = 14.345(4), b = 12.656(3), c = 12.815(3) Å, Z = 4 and R 0.077 for 535 independent observed reflections. The phosphine ligands occupy mutually trans positions P-Ni-P 146.9(3)° in a distorted square-planar arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号