首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The crystal and molecular structure of 9-methyl-9-phenyl-9,10-dihydro-9-sila-3-azaanthrone has been determined from three-dimensional X-ray diffraction data. The title compound crystals are monoclinic, space group P21/b, a = 12.818(2), b = 16.508(2), c = 7.694(1) Å,γ = 105°, 34′(2), Z = 4 and Dcal = 1.278 g cm?3. The structure was determined by direct methods and refined by full-matrix least-squares calculations in the block-diagonal anisotropic approximation for non-hydrogen atoms to R = 0.043 for 2190 independent reflections, registered at room temperature. This is the first crystal structure determination of a Si-dihydroanthracene derivative with two heterocycles and a planar carbon atom in the C10-position. The tricyclic fragment takes up a planar configuration, the silicon atom having a tetrahedral surrounding, with an endocyclic angle of 103.7(1)° and average bond length SiC, 1.862(1) Å. The CO, 1.220(2) Å, bond length in the carbonylic group exactly corresponds with the double bond length. Average distance NC is 1.335(3) Å, angle CNC, 116.5(2)°.  相似文献   

2.
The title compound has been prepared by reaction of (C5H5)2Cr with oxindole (indole with CO in place of CH2 at the 2-position). Red single crystals belong to space group P21/c with a = 10.107(4) Å, b = 22.496(7) Å, c = 9.210(3) Å, β = 93.26(3)°, V = 2091(2), and Z = 2. The centrosymmetric molecule has a CrCr distance of 2.495(4) Å. The mean CrO and CrN distances for the bonds to bridging oxindolate anions are 2.024(7) and 2.065(8) Å, respectively. There is an oxindole molecule bound at each end with a CrO axial bond of length 2.341(8) Å and a hydrogen bond from the oxindole NH group to an equatorial oxygen atom of length 2.83(1) Å. The significance of this compound with respect to CrCr bonding is discussed.  相似文献   

3.
The structural parameters of the completely relaxed 4–21G ab initio geometries of more than 30 basic organic compounds are compared to experimental results. Some ranges for systematic empirical corrections, which relate 4–21G bond distances to experimental parameters, are associated with total energy increments. In general, for the currently feasible comparisons, the following corrections can be given which relate calculated distances to experimental rg parameters and calculated angles to rs-structures For CC single bond distances, deviations between calculated and observed parameters (rg) are in the ranges of ?0.006(2) to ?0.010(2) Å for normal or unstrained hydrocarbons; ?0.011(3) to ?0.016(3) Å for cyclobutane type compounds; and +0.001(5) to +0.004(4) Å for CH3 conjugated with CO. For CO single bonds the ranges are ?0.006(9) to +0.002(3) Å for CO conjugated with CO; and ?0.019(3) to ?0.027(9) Å for aliphatic and ether compounds. A very large and exceptional discrepancy exists for the highly strained ethylene oxide, rsre = ?0.049(5) Å and in CH3OCH3 and C2H5OCH3 the rsre differences are ?0.029(5), ?0.040(10) and ?0.025(10) Å. Some of these discrepancies may also be due to deficiencies of the microwave substitution method caused by atomic coordinates close to inertial planes. For CN bonds, two types of NCH3 corrections are from +0.005(6) to ?0.006(6) and from ?0.009(2) to ?0.014(6) Å; and the range for NCO is +0.012(3) to +0.028(4) Å. For isolated CC double bonds the range is + 0.025(2) to +0.028(2) Å. For conjugated CC double bonds the correction is less positive (+0.014(1) Å for benzene). For CO double bonds the corrections are ?0.004(3) to +0.003(3) Å. For bond angles of type HCH, CCH, CCC, CCO, CCO, OCO, NCO and CCC the corrections are of the order of magnitude about 1–2° (or better). Angles centered at heteroatoms are less accurate than that, when hydrogen atoms are involved. Differences in HOC and NHC angles were found in a range of ?2.3(5)° to ?6.2(4)°.  相似文献   

4.
The crystal structure of [(Me2N)2TiF24 has been determined by single-crystal X-ray diffraction. The crystals are tetragonal, I4, a = b = 11.313(5), c = 12.862(4) Å, Z = 2. The titanium atoms display a distorted octahedral coordination and are linked by TiFTi and TiNMe2Ti bridges to form a tetramer, which possesses a crystallographic inverse tetrad axis at its centre. One fluorine and one dimethylamino group do not participate in the bridging. The principal bond lenghts are TiF(bridging) 2.00(2) and 2.06(2), TiF (terminal) 1.77(2), TiN(bridging) 2.14(3) and 2.19(3), TiN(terminal) 1.99(30) Å. The structure has been refined to R = 0.077 for 231 visually estimated unique reflections.  相似文献   

5.
A series of [3]ferrocenophanes of general formula Fe(C5H4X)2YCl2 and the spiro compounds [Fe(C5H4X)2]2Ge (X = S, Se; Y = Ge, Sn) have been prepared by the reaction of ferrocene 1,1′-dithiol and ferrocene 1,1′-diselenol with tetrahalides of germanium and tin. Spectroscopic properties of the compounds are reported. In solution, the compounds are fluxional by a bridge reversal process. The crystal structure of 1,3-diselena-2,2-dichlorogermyl-[3]ferrocenophane at 163 K. has been determined by X-ray diffraction methods. At that temperature, crystals have space group P21/n with a 6.222(3), b 16.156(13), c 12.968(4) Å, β 97.53(1)° and Z = 4. Least-squares refinement gave R = 0.033 for 2834 unique significant reflections whose intensities were measured by counter diffractometry. The two SeGe bond lengths are 2.323 and 2.325(1) Å, with GeCl 2.148 and 2.161(1) Å. The SeGeSe bond angle is 118.2(1)°, ClGeCl 104.7(1)°, and SeGeCl angles range from 106.2 to 109.8(1)°. The SeC bond lengths are 1.901 and 1.904(5) Å, with CSeGe angles of 95.8 and 96.5(2)°. The cyclopentadienyl rings are in an eclipsed conformation with a mean twist angle of 2.7°, and are inclined to one another at 6.1°. The Se atoms are displaced from the ring planes by 0.17 and 0.20 Å yielding a non-bonded intramolecular Se…Se contact of 3.99 Å.  相似文献   

6.
Ba2V2O7 is triclinic with a = 13.571(3), b = 7.320(2), c = 7.306(2) Å, α = 90.09(1), β = 99.48(1), β = 99.48(1), γ = 87.32(1)°, V = 7.15.1 Å3, Z = 4, and space group P1. The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares analysis to a Rw of 0.034 (R = 0.034) using 2484 reflections measured on a Syntex P1 automatic four-circle diffractometer. The structure has two unique divanadate groups that are repeated by the b and c lattice translations to form sheets of divanadate groups parallel to (100). These sheets are linked by four unique Ba atoms that lie between these sheets. Ba(1) and Ba(3) are coordinated by eight oxygens arranged in a distorted biaugmented triangular prism and a distorted cubic antiprism, respectively. Ba(2) is coordinated by 10 oxygens arranged in a distorted gyroelongated square dipyramid and Ba(4) is coordinated by nine oxygens arranged in a distorted triaugmented triangular prism. These coordination numbers are substantiated by a bond strength analysis of the structure, and the variation in 〈BaO〉 distances is compatible with the assigned cation and anion coordination numbers. Both divanadate groups are in the eclipsed configuraton with 〈VO(br)〉 bond lengths of 1.821(4) and 1.824(4) Å and VO(br)V angles of 125.6(3) and 123.7(3)°, respectively. Examination of the divanadate groups in a series of structures allows certain generalizations to be made. Longer 〈VO(br)〉 bond lengths are generally associated with smaller VO(br)V angles. When VO(br)V < 140°, the divanadate group is generally in an eclipsed configuration; when VO(br)V > 140°, the divanadate group is generally in a staggered configuration. Nontetrahedral cations with large coordination numbers require more oxygens with which to bond, and hence O(br) is more likely to be three coordinate, with the divanadate group in the eclipsed configuration. In the eclipsed configuration, decrease in VO(br)V promotes bonding between O(br) and nontetrahedral cations, and hence smaller nontetrahedral cations are generally associated with smaller VO(br)V angles.  相似文献   

7.
The structure of the cyclo-metalladisiloxane, Me2SiOSiMe2Ir(H)(CO)(PPh3)2, has been determined by single crystal X-ray diffraction using Mo-Kα radiation. Data were collected to 20 = 45 ° giving 6060 unique reflections,of which 4582 had I ?3σ(I). The latter were used in the full-matrix refinement. Crystallographic data: space group, P1; cell constants: 12.604(7),12.470(4), 15.821(6) Å, 66.93(6)°, 105.34(7)°, 112.41(8)°;V 2095(3) Å3; p(obs) 1.45 g/cm3; p(calc) 1.46g/cm3 (Z=2). The asymmetric unit consists of one iridium complex and one molecule of ethanol of salvation. The structure was solved by standard heavy atom methods and refined with all non-hydrogen atoms anisotrophic to final R factors, R1 0.034 and R2 0.042. The iridium metallocycle has approximate Cs symmetry with the mirror plane passing through the four-membered IrSiOSi ring. The average IrP, IrSi and SiO bond lengths are 2.38, 2.41, and 1.68 Å, respectively. The IrCO and CO bond lengths are 1.903(8) and 1.133(8). The H atom bonded to Ir was not located.The Ir atom is raised out of the basal, P2Si2 plane toward the carbonyl by about 0.26 Å. The most striking feature of the structure is the strain apparent in the four-membered ring. The internal angels are: 64.7 (SiIrSi), 96.8 (IrSiO), 97.8 (IrSiO), and 99.8 (SiOSi). In an unstrained molecule, the SiOSi angle is normally in the 130–150° range. It is proposed that the strain in the ring is consistent with the catalytic activity of the metallocycle.  相似文献   

8.
The structure of Mn(NO)3PPh3 has been analyzed by single-crystal X-ray diffraction. It shows a tetrahedral geometry with essentially linear nitrosyl groups, and an eclipsed configuration around the MnP bond. Average distances and angles are: MnN 1.686(7) Å, MnP 2.315(2) Å, NO 1.165(10) Å, PC 1.815(4) Å, MnNO 177.2(7)°, PMnN 103.6(2)°, NMnN 114.7(4)°. Final R factor 7.3% for 2064 non-zero reflections. The structure of the five-coordinate nitrito complex Mn(NO)2(ONO)(PEt3)2 is also mentioned briefly.  相似文献   

9.
Crystals of oxo-bis[tribenzylgermanium(IV)], O[(PhCH2)3Ge]2, are rhombohedral, space group R3, having a = 9.621(2) Å, α = 85.48(3)°. The structure was solved by Patterson methods using diffractometer data and refined by full-matrix least squares to R = 0.0876. The structure consists of molecules lying along the 3-fold axis of the unit cell, in which the GeOGe fragments are strictly linear and centrosymmetric. The GeO distance is 1.730(1) Å and the GeC distance is 1.980(5) Å.  相似文献   

10.
The crystal and molecular structure of methylbenzoatechromium dicarbonyl thiocarbonyl has been determined by a single-crystal X-ray study. The compound crystallizes with two molecules in a unit cell of symmetry P1, with the following parameters: triclinic system, a = 7.108(3), b = 10.340(4), c = 8.523(3) Å; α = 89.75(6), β = 95.89(4), γ = 105.50(4)°; V = 601 Å3; dm = 1.57 ± 0.05, dc = 1.56. The structure has been refined to R and R″ values of 0.030 and 0.038 respectively, for 1963 independent reflections. The main feature of the molecule is the Cs symmetry of the Cr(CO)2CS group with a CrC(S) bond length of 1.792(2) Å, shorter than the CrC(O) bond length, mean: 1.849(3) Å.  相似文献   

11.
The molecular structure of [(C6H5)3P]2Pt(C5H8) has been determined from three-dimensional X-ray diffraction data (R = 0.045 for 6033 reflections). The crystal belongs to the triclinic system, space group P1, with two formula units in a cell of dimensions: a = 18.557(2), b = 10.216(2), c = 9.647(2) Å, α = 98.29 (3), β = 73.44(2), and γ = 88.34(2)°.One of the olefinic bonds of dimethylallene, which has no adjacent methyl groups, is coordinated to the platinum atom: PtC(1) = 2.108(8), PtC(2) = 2.049(7) Å. The coordinated dimethylallene molecule is no longer linear, the C(1)C(2)C(3) angle being 140.8(8)°, which is significantly smaller than that found in [(C6H5)3P]2Pd(C3H4). The C(1)C(2) distance is 1.430(11) Å, whereas the uncoordinated bond distance is normal [C(2)C(3) = 1.316(11)Å].  相似文献   

12.
Reactions of the tetrahydrofuran adduct Re2Br2(CO)6(THF)2 with some phosphorous- and nitrogen-containing donors under mild conditions are reported, which led to the formation of substituted products of tricarbonylrhenium(I). Bromide abstraction from the THF adduct by secondary amines and CS2 produced the dithiocarbamato derivatives Re(S2CNR2)(CO)3(HNR2) whose behaviour in solution with CO was also investigated. Mass spectral data for some of the substituted products have been measured. The title compound crystallizes in the space group P21/n with cell constants a = 8.661(2), b = 11.251(3), c = 11.424(3) Å and β = 110.36(2)°, U = 1043.67 Å3 and Dcalc = 2.686 g cm?3, Z = 2. The molecule consists of a planar Re2Br2 moiety, as demanded by symmetry. The two THF groups are on opposite sides of this plane and the three CO groups around each rhenium atom are arranged in a fac arrangement. The unique ReBr distances are 2.642(5) and 2.644(4)Å, while the ReO distance is 2.129(31) Å. The ReBrRe and BrReBr angles are 97.3(2) and 82.7(1)°, respectively. The Re?Re nonbonding distance is 3.967(3) Å. The THF ligands consist of a nearly planar C4 fragment (maximum deviation from planarity 0.06 Å), while the oxygen is 0.348 Å out of that plane, the angle defined by the C4 plane and the COC fragment of the THF ligand being 24.99°. Final values of the discrepancy indices are R(F) = 0.074 and Rw(F) = 0.095.  相似文献   

13.
《Polyhedron》2001,20(15-16):1933-1937
The crystal and molecular structure of tetrakis(μ-o-propionato)bis(methyl 3-pyridyl-N-carbamate)dicopper(II) at 190 K was determined by X-ray analysis. The internuclear Cu⋯Cu distance is 2.6395(3) Å. CuO bond lengths are 1.961(1), 1.9678(9), 1.9828(9) and 1.9979(9) Å and CuN bond length is 2.165(1) Å. The non-bonding Cu(II)⋯Cu(II) contacts for nine binuclear Cu(II) propionates and hexacoordination of Cu(II) ion in the structure of [Cu(CH3CH2COO)2(mpc)2]0.25H2O (mpc=methyl 3-pyridyl-N-carbamate) is consistent with the bond–valence sum model.  相似文献   

14.
The 2,6-di-t-butyl-4-methylphenoxo ligand (ArO?) is ambidentate, giving rise to the O-bonded 15-electron d1 [Ti(η-C5H5)2OAr] and the η5 -[C(2)-C(6)]-bonded 18-electron d8 complex [Rh(ArO-η5)(PPh3)2], obtained from [{Ti(η-C5H5)2Cl}2]-LiO Ar and [Rh{N(SiMe3)2}(PPh3)2]-ArOH, respectively; the average TiC(η) distance is 2.362(10) Å, TiO 1.892(2) Å, and O:C(of Ar) 1.352(3) Å, and TiOC 142.3(2)°; in the RhI complex, C(2)C(6) are coplanar (with CC(av.) 1.38(2) Å). C(1)O 1.28 Å, and Rh to C(2) C(6) bond lengthsare in the range 2.19–2.65 Å.  相似文献   

15.
The crystal structure of tribenzylaluminum · diethyl etherate has been determined by single crystal X-ray diffraction techniques. It crystallizes in the monoclinic system, space group P21, with unit cell dimensions of a 8.106(1), b 15.098(2), c 10.037(1) Å, β 111.02(1)°, V 1146.6(3) Å3, and Z = 2. The final full matrix least-squares refinement on 1139 data gave RF 3.8 and R wF 5.2%. The compound is similar to other organoaluminum adducts yielding a four coordinate aluminum atom with average AlC distances of 1.986 and an AlO distance of 1.901(4) Å which is significantly shorter than the AlO distance observed in other ether adducts. The average CAlC and CAlO angles are 113 and 106°, respectively.  相似文献   

16.
The title compound was obtained in crystalline form suitable for X-ray structure determination. It forms crystals in the monoclinic space group P21/c with two centrosymmetric molecules in a unit cell of dimensions, a = 10.888(1) Å, b = 10.182(2) Å, c = 17.929(4) Å, β = 104.33(1)°. The central Mo2Cl2(O2C)2P2 core has effectively C2h-symmetry with the following principal dimensions: MoMo = 2.091(1) Å, MoCl = 2.405 Å, MoP = 2.566(2) Å, MoO(av.) = 2.103[4] Å, MoMoP = 104.38(7)°, and MoMoCl = 116.23(8)°.  相似文献   

17.
The molecular structure of [(C6H5)3P]2Pd(C3H4) has been determined from three-dimensional X-ray diffraction data. The crystal belongs to the triclinic system, space group P1, with two formula units in a cell of dimensions: a = 19.475(2), b = 10.204(2), c = 18.341(2) Å, α = 108.46(2), β = 85.46(1), and γ = 118.80(1)°.One of the olefinic bonds of allene is coordinated to the palladium atom: PdC(1) = 2.118(9) and PdC(2) = 2.067(8) Å. The coordinated allene is no longer linear, the C(1)C(2)C(3) angle being 148.3(8)°. The C(1)C(2) distance is 1.401(11) Å, whereas the uncoordinated bond remains unchanged [C(2)C(3) = 1.304(12) Å]. The Pd, P(1), P(2), C(1) and C(2) atoms lie almost in the same plane.  相似文献   

18.
The crystal and molecular structures of the title compound have been determined by single crystal X-ray diffraction methods. In the spiro molecule, the metal atom has a geometry very close to tetrahedral, with OTiO angles of 107.9–111.0(2)° and very short TiO bonds of length 1.777–1.791(5)Å. The two TiO5Si4 rings have different, ill-defined conformations; the SiO bond lengths and SiOSi angles are similar to those in (SiO)n rings.  相似文献   

19.
Dimethylaluminium- and dimethylgallium-N,N′-dimethylacetamidine (I and II) are doubly associated forming a puckered eight-membered ring. They crystallize isostructurally in the monoclinic space group P21/c with two dimers per unit cell. The lattice constants of I are a 8.187, b 7.266, c 14.778 Å, β 103.58° and those of II a 8.163, b 7.277, c 14.835 Å, β 103.46°. The MN and the NC bond lengths within the rings are nearly equal, their mean values are for I: AlN 1.925 Å, CN 1.330 Å and for II: GaN 1.979 Å, CN 1.335 Å. This is also true for the exocyclic bond lengths with average values AlC 1.975 Å, NC 1.474 Å, CC 1.509 Å (for I) and GaC 1.998 Å, NC 1.484 Å and CC 1.507 Å (for II). The metal atoms are tetrahedrally coordinated, and the distortion is only slight. The final R-values are 0.034 and 0.056, respectively.  相似文献   

20.
The crystal and molecular structure of the adduct (HAlN-i-Pr)6AlH3 has been determined from single-crystal and three dimensional X-ray diffraction data collected by counter methods. The cage-type molecular structure consists of two six-membered rings, (AlN)3, joined together by four adjacent transverse AlN bonds; the loss of two of these bonds allows the complexation of one alane molecule, with five-coordination of the aluminum (trigonal bipyramidal geometry), through two AlN bonds and two AlHAl bridge bonds. The AlN bond lengths range from 1.873 to 1.959 Å; the average AlH bond length is 1.50(1) Å for the four-coordinated aluminum atoms; the average distance of the two apical hydrogens from the five-coordinated aluminum atom is 1.92(5) Å. Colourless prismatic crystals of the compound have the following crystal data: triclinic space group P1; a = 17.13(2); b = 10.78(2); c = 10.20(2) Å; α = 124.3(4), β = 92.0(4), γ = 92.1(5); Z = 2; calculated density 1.157 g/cm3. The structure has been refined by block-matrix, least-squares methods using 4358 independent reflections to a standard unweighted R factor of 4.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号