首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The species FeRu3(CO)13(μ-PPH2)2, synthesized from Ru3(CO)12 and Fe(CO)4(Ph2PPPh2),has been characterized both spectroscopically and via a single-crystal X-ray structural analysis. This complex crystallizes in the centrosymmetric triclinic space group P1 [No. 2, Ci1] with a  10.066(3), b  12.899(3), c  17.003(4) Å, α  111.89(2), β  91.02(2), γ  102.00(2)°, V  1992.7(9) Å3, Z  2, ?(obsd)  1.79(2) g cm-3 and ?(calcd)  1.82 cm-3. Diffraction data were collected with a Syntex P21 automated four-circle diffractometer and the structure was refined to RF  6.0% and RWF  3.6% for all 5213 reflections (RF  3.8%, RWF  3.6% for those 4140 reflections with |Fo|> 3σ(|Fo|).The metal atoms define a planar triangulated rhombus, with atoms Ru(1) and Ru(2) at the bridgehead, and Fe(1) and Ru(3) at the acute apices. Fe(1) is linked to four terminal carbonyl ligands and is associated with the heteronuclear bonds Fe(1)Ru(1)  2.861(1) Å and Fe(1)Ru(2)  2.868(1) Å. The ruthenium atoms are each bonded to three terminal carbonyl groups. The retheniumruthenium distances are Ru(1)Ru(2)  3.098(1), Ru(1)Ru(3)  3.147(1), and Ru(2)Ru(3)  3.171(1) Å. The structure is completed by Ph2P bridges across the Ru(1)Ru(3) and Ru(2)(ru(3) vectors (<Ru(1)P(1)Ru(3)  84.89(5)° and <Ru(2)P(2)Ru(3)  85.56(6)°).  相似文献   

2.
8-Quinolinol reacts with Ru3(CO)12 to give Ru3(CO)8(C9H6NO)2 and Ru- (CO)2(C9H6NO)2. A single-crystal X-ray study of the cluster compound shows that the three ruthenium atoms define an isosceles triangle, with two distances of 2.77 Å and one of 3.04 Å. Since both metalated oxygens act as three-electron donors (RuO distances 2.12 and 2.18 Å), the cluster is a fifty-electron species with a formal zero bond order for the elongated RuRu bond. Four other hydroxyhydrocarbylpyridine compounds also give complexes of composition Ru3(CO)8(L)2 which probably have analogous structures.  相似文献   

3.
Twelve new trinuclear complexes containing terminal PH2Ph, edge-bridging PHPh and/or capping PPh ligands have been isolated from the reaction of M3(CO)12 (M = Ru or Os) with PH2Ph in refluxing solvents. HRu3(CO)10(PHPh) (IIIa) crystallises in the monoclinic space group P21/c with a = 8.761(3), b = 11.402(4), c = 22.041(7) Å,β = 98.89(2)°, and Z = 4. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by blocked-cascade least squares to R = 0.027 for 3676 unique observed intensities. The X-ray analysis shows that one edge of the Ru3 triangle is bridged by a hydride and the PHPh ligand, and that the phosphorus-bound hydrogen atom lies over the metal triangle and the phenyl group away from it. This provides an explanation for the ready formation of the capped species H2Ru3(CO)9(PPh) (Va) on pyrolysis of the edge-bridged complex as opposed to the previously reported conversion of HOs3(CO)10(NHPh) to an orthometallated derivative under similar conditions. An X-ray analysis of H2Ru3(CO)9-(PPh) (Va) confirms the capped geometry. the complex crystallises in the monoclinic space group P21/n with a = 9.323(4), b = 15.110(6), c = 45.267(15) Å,β = 91.84(3)°, and Z = 12. the structure was solved and refined using the same techniques as described previously. The final residual R is 0.061 for 4839 reflections. Some reactions of Va show that the phosphorous cap is difficult to displace and stabilises the molecule with respect to decomposition to non-cluster species.  相似文献   

4.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

5.
Hydrocarbon solutions of Mo2(O—t-Bu)6 and PF3 (2 equiv) yield Mo4F4(O—t-Bu)8, I, and PF2(O—t-Bu). Compound I contains a bisphenoid of molybdenum atoms with two short MoMo distances, 2.26 Å, and four long MoMo distances, 3.75 Å, corresponding to localized MoMo triple bonding and non-bonding distances, respectively. The tetranuclear compound may be viewed as a dimer, [Mo22-F)2(O-t-Bu)4]2, and addition of PMe3 to hydrocarbon solutions of I yields Mo2F2(O—t-Bu)4(PMe3)2, II, which contains an unbridged MoMo triple bond of distance 2.27 Å. Each molybdenum atom is coordinated to two oxygen atoms, one fluorine atom and the phosphorus atom of the PMe3 ligand in a roughly square planar manner. The overall central Mo2O4F2P2 skeleton has C2 symmetry and NMR studies (1H, 19F and 31P) are consistent with the maintenance of this type of structure in solution. Infrared and electronic absorption spectral data are reported. These are the first compounds containing fluorine ligands attached to the (MoMo)6+ unit.  相似文献   

6.
en Two differnt crystal modifications of hexaphenyldigermanium sulfide (C6H5GeSGe(C6H5)3 (I and II were obtained by crystallization from hot benzene/methanol or form ethanol at 20°C. Single crystal X-ray structural analyses for both I (low temperature data at ?130°C) and II (at 20°C) (I, R = 0.046; II, R = 0.048) were performed. I is monoclinic, P21/c, with a = 11.020(3), b = 15.473(3), c 18.606(3) »,π = 106.92(2)°, Z = 4; II is orthorhombic, P212121, with a = 2.617(2), b = 17.345(3), c = 18.408(3) », Z = 4.The molecules have different conformeric structures with respect to a rotation of the (C6H6)3Ge groups around the Ge bonds with very similar bond lenghts and angles. Bond data for I(II) are: GeS 2.212(1) and 2.261(1) » (2.227(2) and 2.240(2) »); GeC 1.933(4) ? 1.971(4), mean 1.945(5) » (1.931(7)?1.954(7), mean 1.943(4) »); GeSGe 111.2(1)° (110.7(1)°). The Ge bond lenghts are comparable to those in thiogermanates and do not indicate significant π-bond contributions.  相似文献   

7.
The structure of Rh2(CH3CO2)4(DMF)2 {DMF = HCON(CH3)2} has been determined by single crystal X-ray methods. The compound crystallizes with eight formula units in a cell of dimensions: a = 29.438(7) Å, b = 7.978(2) Å, c = 20.279(5) Å, β = 113.20(4)°, V = 4377.5 Å3, space group C2/c. The structure has been refined by full-matrix least-squares method to a final R = 0.030 for the 4156 observed data. Two Rh(II) atoms are linked by four acetate groups forming a dimeric unit, where the RhRh distance is 2.383(1) Å. The coordination sphere about each Rh atom is completed by a DMF molecule; the average RhO(DMF) distance is 2.296(3) Å.  相似文献   

8.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

9.
When [HFe(CO)4]? is treated first with NaBiO3 and then dilute H2SO4, a complex mixture of neutral metal carbonyl clusters results, some of which can be extracted into petroleum ether. Upon prolonged standing the extract yields a precipitate which has been characterized by X-ray crystallography as Bi2Fe3(CO)9.The complex Bi2Fe3(CO)9 crystallizes in the centrosymmetric orthorhombic space group Cmcm (D2h17; No. 63) with a 10.616(2) Å, b 13.458(3) Å, c 11.347(3) Å, V 1621.1(7) Å3 and Z = 4. Single-crystal X-ray diffraction data (Mo-Kα, 2θ = 4.5–55.0°) were collected on a Syntex P21 four-circle diffractometer and the structure was refined to RF 5.4% and RWF 4.5% for all 1039 independent data (RF 4.5% and RWF 4.5% for those 851 reflections with |F0| > 3.0σ(|F0|)). The molecule lies on a site of crystallographic C2v symmetry and is disordered. The individual molecules have a trigonal bipyramidal Bi2Fe3 core with the bismuth atoms occupying the apical sites (BiFe 2.617(2)–2.643(2) Å, FeFe 2.735(5)–2.757(5) Å). Each iron atom is linked to three terminal carbonyl ligands and the molecule has approximate C3h symmetry. The nine peripheral oxygen atoms are ordered and define a tricapped trigonal prism. The equatorial iron atoms are disordered with the two Fe3 triangles mutually displaced by approximately 30°; the disordered ensemble has approximate D3h symmetry.  相似文献   

10.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

11.
The structures of two carbonylphosphine complexes of chromium were determined by X-ray analysis. cis-Tricarbonyltriphosphinechromium(0), [(CO)3(PH3)3Cr], crystallizes in space group P21/m with a = 6.90± 0.01, b = 11.29±0.02, c = 6.41±0.01 Å, β = 93.80±0.08°, Z=2. The structure was solved by conventional methods and refined by least squares (R1 = 0.056). The idealized octahedral molecule shows approximate C3v, symmetry. The mean CrP-distance is 2.346±40.003 Å. Pentacarbonylphosphinechromium, [(CO)5(PH3)Cr], crystallizes in spacegroup Pnma with a = 12.23±0.02, b = 11.33±0.02, c = 6.61 ±0.01 Å, Z = 4. Cell dimensions and structural parameters are very similar to those of hexacarbonylchromium(0). In the crystal the PH3 group is disordered over three mutually cis-positions of the coordination octahedron.  相似文献   

12.
The complex dicarbonylbis(diphenylethylphosphine)platinum, Pt(CO)2[P(C6H5)2(C2H5)]2, crystallizes in either of the enantiomorphous space groups P3121 (No. 152) and P3221 (No. 154) with cell dimensions a = 10.64(1), c = 22.06(1) Å, U = 2163 Å3; pc = 1.564 g/cm3 for Z = 3, pm = 1.55(3) g/cm3. The intensities of 1177 independent reflections have been determined by counter methods with MoKα monochromatized radiation. The structure has been solved by the heavy atom method. The refinement, carried out by full-matrix least squares down to a final R factor of 0.042, has enabled the absolute configuration of the crystal sample (space group P3121) to be ascertained. The molecule is roughly tetrahedral, and has the metal atom lying on a two-fold axis of the cell. Bond parameters are: PtC = 1.92(2) Å, PtP = 2.360(4) Å, CPtC = 117(1)° and PPtP = 97.9(2)°. The PtC2 and PtP2 moieties make a dihedral angle of 86.0(3)°. The overall C2 symmetry of the molecule is probably only a statistically averaged situation, a disorder in the PtCO interactions being apparent from the orientations of the thermal ellipsoids of the C and O atoms.  相似文献   

13.
The crystal structure of [(C8H12)Ir{P(OC6H3Me)(OC6H4Me)2} {P(OCH2)3CMe}] has been determined. a 18.32, b 18.98, c 9.35 Å, U 3251 Å3, Pn21a, Z = 4, R = 0.048, 2541 observed data.The coordination about the iridium atom is distorted trigonal bipyramidal; the two phosphorus atoms are equatorial, the σ-bonded carbon is axial, and the bidentate cyclooctadiene is bonded axialequatorial. The IrC(axial) bonds are longer than the IrC(equatorial) bonds: 2.22, 2.26; 2.17, 2.19 Å. The IrC(σ) bond length is 2.19 Å, not significantly different from the formally π-bonded C to Ir distances. The IrP lengths of 2.201 and 2.240 Å and the PIrP angle of 108.7° are normal. The longer IrP bond is in the five-membered chelate ring. The inertness to substitution is discussed.  相似文献   

14.
The crystal and molecular structures of [tris(trimethylsilyl)silyl]pentacarbonylmanganese, (Me3Si)3SiMn(CO)5, have been determined from three-dimensional X-ray data obtained by counter methods. The compound crystallizes in space group P1 of the triclinic system, with two molecules in a unit cell of dimensions: a = 9.002(2), b = 9.655(2), c = 15.639(3) Å, α = 83.66(1), β = 105.65(1), γ = 114.61(1)°.The observed and calculated densities are 1.20 (±0.03) and 1.23 g-cm?3 respectively. Full-matrix least-squares refinement of the structure has led to a final value of the conventional R factor of 0.059 for the 818 independent reflections having F2 > 3σ(F2).The coordination geometry about the manganese atom is approximately octahedral and, about the silicon atom bonded to the manganese atom, tetrahedral.The relative orientations of carbonyl and trimethylsilyl groups, when viewed down the MnSi bond, appear consistent with minimization of energy due to nonbonded interactions.Two of the equatorial carbonyl groups are displaced out of the equatorial plane towards the silicon ligand by 6°. The SiMn bond is 2.564(6) Å long and has no multiple character.  相似文献   

15.
The cluster HRu3(CO)10(COCH3) has been prepared from Na[HRu3(CO)11] and [(CH3)3O]BF4 in acetonitrile. The complex crystallises in the monoclinic space group P21/c, with cell dimensions a 7.937(2), b 16.880(9), c 14.074(3) Å, β 104.16(3)° and Z 4. The structure was solved by a combination of Patterson and Fourier techniques and refined by full-matrix least-squares to final residues of R = 0.031 and Rw = 0.035 for the 2529 unique intensities. The three ruthenium atoms define an approximately equilateral triangle with one edge bridged by both a μ2-H and a μ2-COCH3 ligand. The fluxional behaviour of HRu3(CO)10-(COCH3) has been studied by variable temperature 13C NMR spectroscopy. The spectra are indicative of several dynamic processes occurring in solution over the range ?100 to +90°C. The μ2-COCH3 species can be considered as a bridging three-electron donor and thus represents a μ2-carbyne ligand.  相似文献   

16.
Crystals of the trinuclear complex [(Me6C6)3Zr3Cl6][Al2Cl7]2 have been obtained from the reaction of ZrCl4, hexamethylbenzene, AlCl3, and Al in benzene. They are monoclinic, space group C2/2, with Z  4 and lattice parameters a 14.167(3), b 27.779(7), c 15.721(3) Å and β 94.27(4)°. The Zr atoms form a regular triangle. Each pair of Zr atoms is bridged by two Cl atoms. The fifth coordination site of each Zr atom is occupied by a h6-Me6C6 group. The cation is almost isostructural with the known trinuclear cation [(Me6C6)3Nb3Cl6]2+. Important distances are: ZrZr 3.35, ZrCl 2.56, and Zrcenter of C6 ring 2.17 Å. One of the two independent [Al2Cl7]? anions occurs in a staggered conformation and one occurs in an eclipsed conformation.  相似文献   

17.
Ligand substitution of the mixed-metal clusters FeRu2(CO)12 and Fe2Ru(CO)12 with triphenylphosphine and trimethylphosphite has been studied. Mono- and di-substituted derivatives have been synthesized and characterized structurally. The following crystal and molecular structures are reported: Fe2Ru(CO)11PPh3: triclinic, space group P1, a 9.203(2), b 11.903(3), c 15.117(4) Å, α 81.54(2), β 87.28(2), γ 66.72(2)°, Z = 2; Fe2Ru(CO)11P(OMe)3: orthorhombic, space group Pna21, a 17.220(5), b 14.572(4), c 8.708(6) Å, Z = 4, FeRu2(CO)11PPh3: monoclinic, space group P21/n, a 11.435(3), b 16.034(5), c 16.642(4) Å, β 93.35(2)°, Z = 4; FeRu2(CO)10(PPh3)2: orthorhombic, space group Pccm, a 14.854(4), b 17.180(7), c 16.786(12) Å, Z = 4.Ligand substitution is found to occur preferentially at the ruthenium centers of the FeRu2 and Fe2Ru clusters. Monosubstitution causes expansion of both of the clusters while the overall geometry is practically unchanged. Disubstitution of FeRu2(CO)12 causes contraction of the cluster and leads to a formation of carbonyl bridges. The structural trends have been interpreted in terms of electronic and packing effects of ligand substitution. The X-ray structures of Fe2Ru(CO)12 and FeRu2(CO)12 are not known; the ligand substitution studies indicate that Fe2Ru(CO)12 has the same structure as Fe3(CO)12, and that FeRu3(CO)12 does not have a Ru3(CO)12 structure as postulated previously from the IR studies.  相似文献   

18.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

19.
The title compound has been prepared by reaction of (C5H5)2Cr with oxindole (indole with CO in place of CH2 at the 2-position). Red single crystals belong to space group P21/c with a = 10.107(4) Å, b = 22.496(7) Å, c = 9.210(3) Å, β = 93.26(3)°, V = 2091(2), and Z = 2. The centrosymmetric molecule has a CrCr distance of 2.495(4) Å. The mean CrO and CrN distances for the bonds to bridging oxindolate anions are 2.024(7) and 2.065(8) Å, respectively. There is an oxindole molecule bound at each end with a CrO axial bond of length 2.341(8) Å and a hydrogen bond from the oxindole NH group to an equatorial oxygen atom of length 2.83(1) Å. The significance of this compound with respect to CrCr bonding is discussed.  相似文献   

20.
The molecular and crystal structure of tris(bistrimethylsilylamin)thallium was determined by means of single-crystal X-ray spectroscopy: in the space group P31c with a = 16.447(7), c = 8.456(7) Å; and Dc = 1.149 g cm?3 two molecules are located in the unit cell. The compound is isomorphous to the analogues Fe[N(SiMe3)2]3 or Al[N(SiMe3)2]3, respectively, which show a propellar-twist of the Si2N-groups versus the plane of the metal atom and the three nitrogen-atoms: Tl(N)3/Si2N 49.1°; SiNSi 122.6°; NSiC 111.8°; CSiC 107.1°; TlN 2.089 Å;; SiN 1.738 Å;; SiC 1.889 Å;.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号