首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The He(I) and He(II) photoelectron spectra are reported for two series of transition metal mixed sandwich complexes of general formula LaMLb (M = Ti, La = η5-C5H5, η5-CH3C5H4, η5-C5(CH3)5; M = Zr, Hf, La = η5-C5(CH3)5; Lb = η7-C7H7 (series I); M = Ti, La = η5-CH3C5H4, η5-C5(CH3)5; M = Zr, La = η5-C5(CH3)5; Lb = η8-C8H8 (series II)). Assignments were made of the metal d, cyclopentadienyl and carbocyclic π orbitals on the basis of He(I)/He(II) intensity ratios and shift effects and by comparison with UP data for related compounds. For series I no influence of the central metal upon the IEs of the highest occupied molecular orbital e2 was observed. The IE of the non-bonding metal dz2 orbital of Ti or Zr (5.28 and 4.70 eV, respectively) in the complexes of series II (La = η5-C5(CH3)5) is very low.  相似文献   

2.
The photolysis of [L2Pt(C2H4)] (L = PPh3, P(p-C6H4CH3)3 complexes in halocarbon solvents (CH2Cl2, CH2Br2) gives C2H4 and the coordinatively unsaturated species [L2Pt]. Photolysis of platinum metallacycles [L2Pt(CH2)4] (L = PPh3, P(n-Bu)3) generates alkanes, alkenes and [L2Pt]. The [L2Pt] centers are very reactive, and under prolonged photolysis undergo oxidative addition of CH2Cl2 forming the trans-[L2Pt(CH2Cl)Cl] complexes. Under appropriately controlled conditions the trans complexes isomerize to cis species before bimolecular C2H4 elimination occurs and [L2PtCl2] is formed as the final product. The oxidative addition-reductive elimination mechanism is discussed on the basis of spin-trapping experiments, quantum yield values, and the sensitivity to radical inhibitors and to solvents.  相似文献   

3.
The first order rate constants for the tautomerization of the hydrio(alkynyl) clusters Ru3Pt(μ-H){μ42-C ≡ C1Bu}(CO)9(L2);1a: L2 = dppe,1b; L2 = dppet,1c; L2 = dppp and1d; L2 =S,S-dppb to the corresponding vinylidene clusters Ru3Pt{μ42-C = C(H)tBu}(CO)9(L2)2 have been measured, and they follow the orser1d <1a <1b1c. The reactions involving1a and1d exhibit an inverse kinetic deuterium isotope effect. The structures of1b, 2b, 2c, and2d were determined by X-ray crystallography, and are compared with those of1a and2a which have been previously reported. Crystal data for1b, space groupPbca,a = 13.338(4) Å,b = 17.771(6) Å,c = 36.092(8) Å,Z = 8,R(R w) = 0.059(0.058) for 2342 absorption corrected, observed data; for2b, space group P21/n,a = 10.566(2) Å,b = 20.234(5) Å,c = 20.270(3) Å,β = 96.11(1)°,Z = 4,R(R w) = 0.043(0.053) for 5865 absorption corrected, observed data; for2c, space group P21/n,a = 14.211(5) Å,b = 19.534(2) Å,c = 15.870(2) Å,β = 100.81(2)°,Z = 4,R(R w) = 0.055(0.031) for 6566 absorption corrected, observed data: for2d, space group P212121,a = 12.309(4) Å,b = 19.047(6) Å,c = 19.206(4) Å,Z = 4,R(R w) = 0.055(0.053) fpr 2151 absorption corrected, observed data. The fluxional behavior of1d and1e (which consists of two interconverting isomers) has been examined by variable temperature13C NMR spectroscopy and by31P EXSY.  相似文献   

4.
A series of copper(II) complexes, [Cu(L1)(NCS)] (I), [CuBr(L2)] (II), and [CuCl(L3)] (III), where L1, L2, and L3 are 2,4-dibromo-6-[(pyridin-2-ylmethylimino)methyl]phenolate, 4-chloro-2-[(pyridin-2-ylmethylimino)methyl]phenolate, and 1-[(pyridin-2-ylmethylimino)methyl]-naphthalen-2-ol, respectively, were prepared. The complexes were characterized by elemental analysis, IR spectra, and single crystal X-ray determination. The crystals of the three complexes crystalize in the monoclinic space group P21/n. For I, a = 8.127(2), b = 13.077(3), c = 14.967(3) Å, β = 91.975(2)°, V = 1589.8(6) Å3, Z = 4. For II, a = 7.736(2), b = 10.613(2), c = 16.199(3) Å, β = 91.130(2)°, V = 1329.8(5) Å3, Z = 4. For III, a = 8.062(2), b = 8.599(2), c = 21.087(2) Å, β = 100.338(2)°, V = 1438.1(4) Å3, Z = 4. The Cu atom in each of the complexes is in square planar geometry.  相似文献   

5.
The reaction of RHN(CH2)3NHR (1a,b) (a, R=2,6-iPr2C6H3; b, R=2,6-Me2C6H3) with 2 equiv of BuLi followed by 2 equiv of ClSiMe3 yields the silylated diamines R(Me3Si)N(CH2)3N(SiMe3)R (3a,b). The reaction of 3a,b with TiCl4 yields the dichloride complexes [RN(CH2)3NR]TiCl2 (4a,b) and two equiv of ClSiMe3. An X-ray study of 4a (P21/n, a=9.771(1) Å, b=14.189(1) Å, c=21.081(2) Å, β=96.27(1)°, V=2905.2(5) Å3, Z=4, T=25°C, R=0.0701, Rw=0.1495) revealed a distorted tetrahedral geometry about titanium with the aryl groups lying perpendicular to the TiN2-plane. Compounds 4a,b react with 2 equiv of MeMgBr to give the dimethyl derivatives [RN(CH2)3NR]TiMe2 (5a,b). An X-ray study of 5b (P212121, a=8.0955(10) Å, b=15.288(4) Å, c=16.909(3) Å, V=2092.8(7) Å3, Z=4, T=23°C, R=0.0759, Rw=0.1458) again revealed a distorted tetrahedral geometry about titanium with titanium–methyl bond lengths of 2.100(9) Å and 2.077(9) Å. These titanium dimethyl complexes are active catalysts for the polymerization of 1-hexene, when activated with methylaluminoxane (MAO). Activities up to 350,000 g of poly(1-hexene)/mmol catalyst·h were obtained in neat 1-hexene. These systems actively engage in chain transfer to aluminum. Equimolar amounts of 5a or 5b and B(C6F5)3 catalyze the living aspecific polymerization 1-hexene. Polydispersities (Mw/Mn) as low as 1.05 were measured. Highly active living systems are obtained when 5a is activated with {Ph3C}+[B(C6F5)4]. A primary insertion mode (1,2 insertion) has been assigned based on both the initiation of the polymer chain and its purposeful termination with iodine.  相似文献   

6.
In the work, isomeric complexes of platinum(II) with the (ptac)–1 pivaloyltrifluoroacetonate ion (Pt((CH3)3–CO–CH–CO–CF3)2) are studied. The synthesis and chromatographic separation of Pt(ptac)2 isomers are described, TGA data for the separated isomers are given, and the crystal structures of the solid phases are studied. The cis-Pt(ptac)2 complex crystallizes in the space group P-1, a = 10.7091(4) Å, b = 12.7787(6) Å, c = 16.0154(8) Å, α = 92.389(2)°, β = 90.868(2)°, γ = 112.1260(10)°, V = 2027.39(16) Å3, Z = 4, d calc = 1.918 g/cm3. The trans-Pt(ptac)2 complex crystallizes in the space group C2/m, a = 13.3235(5) Å, b = 8.5515(3) Å, c = 9.6694(3) Å, β = 118.5880(10)°, V = 967.38(6) Å3, Z = 2, d calc = 2.010 g/cm3. The structures of the complexes are molecular, the Pt atom has a square coordination of four oxygen atoms of two ligands; for cis-Pt(ptac)2, the Pt–Oav distance is 1.968 Å, for trans-Pt(ptac)2 it is 1.980 Å.  相似文献   

7.
From solutions in 2-picoline (2-methylpyridine), depending on the temperature of crystallization, the universal clathratogen — 1,1′-binaphthyl-2,2′-bicarboxylic acid (BBA) — precipitates as crystals of three types with different composition and structure. Under normal conditions (room temperature), the precipitate is crystals of BBA disolvate with 2-picoline; a temperature reduction of 20°C results in the crystallization of monosolvate dihydrate; and a temperature increase of the same level results in the precipitation of monosolvate. That is, as the temperature of crystallization rises, the number of included guest molecules gradually decreases and the space where they are located becomes more closed. In 1:1:2 BBA/2-picoline/H2O solvate (space group P21/n, a = 11.991(2) Å, b = 9.317(2) Å, c = 22.283(5) Å, β = 99.77(3)○, V = 2453.3(9) Å3, Z = 4), the carboxyl groups of the BBA molecule at the C21 atom are deprotonated and the released proton goes to the nitrogen atom of 2-picoline. BBA molecules interact with those of 2-picoline and water via H bonds to form infinite chains in direction [111], which, in their turn, join together into infinite two-dimensional sheets parallel to plane (?101). 2-Picoline molecules are located in the channels. In BBA/2-picoline disolvate (space group C 2/c, a = 11.7523(11) Å, b = 13.8563(13) Å, c = 17.9615(13) Å, β = 108.044(9)○, V = 2781.1(4) Å3, Z = 4), one BBA molecule and two H bond 2-picoline molecules form a 0-dimensional associate of the type G-H-G. The solvent molecules are also located in the channels. In BBA/2-picoline monosolvate (space group P21/c, a = 9.299(5) Å, b = 12.727(5) Å, c = 19.011(5) Å, β = 95.248(5)○, V = 2240.5(16) Å3, Z = 4), each BBA molecule is H-bonded with a 2-picoline molecule to form a 0-dimensional associate of the type H-G. Guest molecules are located in closed cavities.  相似文献   

8.
Two new isostructural methoxide-bridged dimeric oxovanadium(V) complexes [VO(L1)(OMe)]2 (1) and [VO(L2)(OMe)]2 (2), where L1 and L2 are the deprotonated forms of 3-bromo-N′-[1-(2-hydroxyphenyl)×ethylidene]benzohydrazide (H2L1) and 3-chloro-N′-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide (H2L2) respectively, are synthesized and characterized by elemental analyses, IR spectra, and single crystal X-ray determination. Both crystals crystallize in the triclinic space group P-1. For 1, a = 7.5237(15) Å, b = 10.846(3) Å, c = 11.195(3) Å, α = 84.143(3)°, β = 72.244(3)°, γ = 77.869(3)°, V = 849.9(4) Å3, Z = 1, R 1 = 0.0634, wR 2 = 0.1373. For 2, a = 7.493(2) Å, b = 10.740(3) Å, c = 11.109(3) Å, α = 84.569(2)°, β = 71.783(2)°, γ = 79.822(2)°, V = 835.0(4) Å3, Z = 1, R 1 = 0.0511, wR 2 = 0.1076. Each V atom in the complexes is octahedrally coordinated.  相似文献   

9.
Two Schiff base zinc(II) complexes, [ZnBr2L1] · 2CH3OH (I) (I) and [ZnBr2L2] (II), where L1 is 4-chloro-2-[(2-piperazin-1-ylethylimino)methyl]phenol and L2 is 4-chloro-2-[(3-diethylaminopropylimino)methyl]phenol were synthesized and structurally characterized. The crystal of I is monoclinic: space group P21/c, a = 9.831(3), b = 18.680(6), c = 11.879(4) Å, β = 94.660(6)°, V = 2174.3(11) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 7.2310(14), b = 16.037(3), c = 15.856(3), β = 90.01(3)°, V = 1838.7(6) Å3, Z = 4. The Zn atom in each complex is four-coordinated by one phenolate O and one imine N atoms of the Schiff base ligand and two bromide atoms, forming a tetrahedral coordination. The urease inhibitory activities of the complexes were evaluated.  相似文献   

10.
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy.  相似文献   

11.
Manganese(III) complexes derived from the bis-Schiff bases N,N′-bis(5-fluorosalicylidene)-1,2-diaminoethane (H2La) and 3,4-bis(2-hydroxybenzylideneamino)pyridine (H2Lb), respectively, have been prepared and characterized by elemental analyses, IR, and single crystal X-ray crystallographic determination (CIF files CCDC nos. 997243 (I), 995896 (II)). The crystal of [MnLa1,3-N3)] n (I) is orthorhombic: space group Pca21, a = 10.723(1), b = 13.430(1), c = 11.112(1) Å, V = 1600.2(2) Å3, Z = 4, R 1 = 0.0264, wR 2 = 0.0649. The crystal of [MnLb(N3)(CH3OH)] (II) is monoclinic: space group C2/c, a = 22.792(1), b = 14.4442(7), c = 12.8637(6) Å, β = 119.262(1)°, V = 3694.5(3) Å3, Z = 8, R 1 = 0.0367, wR 2 = 0.0776. The bis-Schiff base ligands coordinate to the metal atoms through phenolate O and imine N atoms. Each metal atom in the complexes is in octahedral coordination. The effects of the complexes on the antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans were studied.  相似文献   

12.
The Platinum(II) diamine with N,N-dimethylethylenediamine (N,N-dimeEn) [Pt{(CH3)2N(CH2)2NH2}Cl2] (I) was synthesized. The reaction of the diamine with pyridine gave Pt(II) tetramine [Pt{(CH3)2N(CH2)2NH2}Py2]Cl2 (II), which was oxidized with chlorine to give Pt(IV) triamine Pt{[(CH3)2N(CH2)2}PyCl3]Cl · H2O (III). The reaction of III with chlorine (chloroamidation) yielded chloroimide [Pt{(CH3)2N(CH2)2NCl}PyCl3] (IV). The IR spectra of complexes I–IV and UV/Vis spectra of III and IV were studied. X-Ray diffraction analysis was performed for III (monoclinic crystals, space group P21/c, a = 7.7437(6), b = 8.1100(7), c = 28.52992(2) Å, β = 93.7280(10)°, Z = 4, R hkl = 0.0420) and IV (orthorhombic crystals, space group Pna21, a = 15.7825(12), b = 7.4447(6), c = 12.3099(6) Å, Z = 4, R hkl = 0.0539). During oxidation of Pt(II) tetramine with chlorine, the pyridine molecule is removed from the cis position relative to the (CH3)2N group (trans position relative to the NH2 group) of N,N-dimethylethylenediamine. The reaction of chloroimide complex IV with concentrated HCl (dechloroamidation) at 20°C afforded the initial complex III; that at 100°C, gave triamine III together with Pt(IV) diamine [Pt(N,N-dimeEn)Cl4] (V) (monoclinic crystals, space group P21/n, a = 7.1278(5), b = 11.5384(8), c = 12.7501(9) Å, β = 93.23(10)°, Z = 4, R hkl = 0.0239).  相似文献   

13.
The synthesis and X-ray single crystal study of two mixed-ligand Cu(II) complexes are performed: (CH3C(NCH3)CHC(O)CH3)(CF3C(O)CHC(O)CF3)Cu (1) (space group P21/c, a = 7.0848(12) Å, b = 17.854(3) Å, c = 11.837(2) Å, β = 100.495(6)°, V = 1472.4(4) Å3, Z = 4), (CH3C(NC6H5)CHC(O)CH3)· (CF3C(O)CHC(O)CF3)Cu (2) (space group P-1, a = 9.1119(4) Å, b = 9.6954(4) Å, c = 11.1447(6) Å, α = 113.784(2)°, β = 92.383(2)°, γ = 95.402(2)°, V = 893.52(7) Å3, Z = 2). The structures are molecular, formed from neutral mixed-ligand copper complexes. The central copper atom has the (3O+N) coordination environment with average Cu-O distances of 1.948 Å and Cu-N of 1.932 Å; the chelate O-Cu-N angle (average) is 94.0°. In the structures, the complexes are linked into dimeric associates with Cu…Cu distances of 3.197 Å (for 1) and 3.246 Å (for 2). The volatility of mixed-ligand complexes 1 and 2 is in between of that of the starting homo-ligand complexes.  相似文献   

14.
Reaction of tridentate Schiff bases with nickel and cadmium salts in methanol afforded two new mononuclear complexes, [Ni(L1)2] (I) and [Cd(L2)2] (II), where L1 and L2 are the anions of 2-bromo-4-chloro-6-[(3-dimethylaminopropylimino)methyl]phenol (HL1) and 2-bromo-4-chloro-6-[(3-morpholin-4-ylpropylimino)methyl]phenol (HL2), respectively. The complexes were characterized by singlecrystal X-ray diffraction (CIF files CCDC nos. 1428653 (I) and 1428654 for (II)), FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P2 1/c, with a = 8.8216(8), b = 14.0424(8), c = 11.8687(12) Å, β = 111.238(2)°, V = 1370.4(2) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P2 1/n, with a = 9.6774(4), b = 15.8970(6), c = 20.3144(7) Å, β = 90.408(2)°, V = 3125.1(2) Å3, Z = 4. The metal atoms in the complexes are coordinated by two tridentate Schiff base ligands, forming octahedral coordination. The free Schiff bases and the complexes were assayed for antibacterial activities. Both complexes are more active against the bacteria than the free Schiff bases. Complex II has the MIC value of 0.39 μg mL–1 against Bacillus subtilis.  相似文献   

15.
Nitrile-functionalized NCN-pincer complexes of type [MBr(NC-4-C6H2(CH2NMe2)2-2,6)] (6a, M = Pd; 6b, M = Pt) (NCN = [C6H2(CH2NMe2)2-2,6]) are accessible by the reaction of Br-1-NC-4-C6H2(CH2NMe2)2-2,6 (2b) with [Pd2(dba)3 · CHCl3] (5a) (dba = dibenzylidene acetone) and [Pt(tol-4)2(SEt2)]2 (5b) (tol = tolyl), respectively. Complex 6b could successfully be converted to the linear coordination polymer {[Pt(NC-4-C6H2(CH2NMe2)2-2,6)](ClO4)}n (8) upon its reaction with the organometallic heterobimetallic π-tweezer compound {[Ti](μ-σ,π-CCSiMe3)2}AgOClO3 (7) ([Ti] = (η5-C5H4SiMe3)2Ti).The structures of 6a (M = Pd) and 6b (M = Pt) in the solid state are reported. In both complexes the d8-configurated transition metal ions palladium(II) and platinum(II) possess a somewhat distorted square-planar coordination sphere. Coordination number 4 at the group-10 metal atoms M is reached by the coordination of two ortho-substituents Me2NCH2, the NCN ipso-carbon atom and the bromide ligand. The NC group is para-positioned with respect to M.  相似文献   

16.
Preparation of the ligands HL1 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-ethylphenol; HL2 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-methoxyphenol and HL3 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-nitrophenol are described together with their Cu(II) complexes with different bridging units. The exogenous bridges incorporated into the complexes are: hydroxo [Cu2L(OH)(H2O)2](ClO4)2.H2O (L1=1a, L2 =1b, L3 =1c), acetato [Cu2L(OAc)2]ClO4.H2O (L1 =2a, L2 =2b, L3 =2c) and nitrito [Cu2L1(NO2)2(H2O)2]ClO4.H2O (L1=3a, L2 =3b, L3 =3c). Complexes1a,1b,1c and2a,2b,2c contain bridging exogenous groups, while3a,3b,3c possess only open μ-phenolate structures. Both the ligands and complexes were characterized by spectral studies. Cyclic voltammetric investigation of these complexes revealed that the reaction process involves two successive quasireversible one-electron steps at different potentials. The first reduction potential is sensitive to electronic effects of the substituents at the aromatic ring of the ligand system, shifting to positive potentials when the substituents are replaced by more electrophilic groups. EPR studies indicate very weak interaction between the two copper atoms. Various covalency parameters have been calculated.  相似文献   

17.
Two triphenylphosphine derivatives, diethyl [4-(diphenylphosphanyl)benzyl]phosphonate (3a) and tetraethyl {[5-(diphenylphosphanyl)-1,3-phenylene]dimethylene}bis(phosphonate) (3b), and also the corresponding free acids 4a and 4b were prepared. These ligands were characterized by 1H, 13C and 31P NMR spectroscopy and mass spectrometry. A full set of their Pd(II) and Pt(II) complexes of the general formula [MCl2L2] and one dinuclear complex trans-[Pd2Cl4(3a)2] were synthesized and their isomerization behaviour in solution was studied. The complexes were characterized by 1H, 13C, 31P and 195Pt NMR spectroscopy, mass spectrometry and far-IR spectroscopy. The X-ray structures of all complexes with 3a or 3b have usual slightly distorted square-planar geometry on the metal ion. Salts of phosphonic acids 4a and 4b and their complexes are freely soluble in aqueous solution; therefore, they can be potentially useful in aqueous or biphasic catalysis.  相似文献   

18.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

19.
The keto-functionalised N-pyrrolyl phosphine ligand PPh2NC4H3{C(O)CH3-2} L1 reacts with [MoCl(CO)35-C5R5)] (R=H, Me) to give [MoCl(CO)2(L11P)(η5-C5R5)] (R=H 1a; Me 1b). The phosphine ligands PPh2CH2C(O)Ph (L2) and PPh2CH2C(O)NPh2 (L3) react with [MoCl(CO)35-C5R5)] in an analogous manner to give the compounds [MoCl(CO)2(L-κ1P)(η5-C5R5)] (L=L2, R=H 2a, Me 2b; L=L3, R=H 3a, Me 3b). Compounds 13 react with AgBF4 to give [Mo(CO)2(L-κ2P,O)(η5-C5R5)]BF4 (L=L1, R=H 4a, Me 4b; L=L2, R=H 5a, Me 5b; L=L3, R=H 6a, Me 6b) following displacement of chloride. The X-ray crystal structure of 4a revealed a lengthening of both Mo–P and CO bonds on co-ordination of the keto group. The lability of the co-ordinated keto or amido group has been assessed by addition of a range of phosphines to compounds 46. Compound 4a reacts with PMe3, PMe2Ph and PMePh2 to give [Mo(CO)2(L11P)(L)(η5-C5H5)]BF4 (L=PMe3 7a; PMe2Ph 7b; PMePh2 7c) but does not react with PPh3, 5a reacts with PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L21P)(L)(η5-C5H5)]BF4 (L=PMe2Ph 8b; PMePh2 8c; PPh3 8d), and 6a reacts with PMe3, PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L31P)(L)(η5-C5H5)]BF4 (L=PMe3 10a; PMe2Ph 10b; PMePh2 10c; PPh3 10d). No reaction was observed for the pentamethylcyclopentadienyl compounds 4b6b with PMe3, PMe2Ph, PMePh2 or PPh3. These results are consistent with the displacement of the co-ordinated oxygen atom being influenced by the steric properties of the P,O-ligand, with PPh3 displacing the keto group from L2 but not from the bulkier L1. In the reaction of [Mo(CO)2(L22P,O)(η5-C5H5)]BF4 (5a) with PMe3 the phosphine does not displace the keto group, instead it acts as a base, with the only observed molybdenum-containing product being the enolate compound [Mo(CO)2{PPh2CHC(O)Ph-κ2P,O}(η5-C5H5)] 9. Compound 9 can also be formed from the reaction of 2a with BuLi or NEt3, and a single crystal X-ray analysis has confirmed the enolate structure.  相似文献   

20.
Cyclic voltammetry has been employed to study the diffusive, irreversible platinum(II) → platinum(0) reduction of three sets of structurally related complexes: cis-[PtCl2P{p-C6H4X}3)2] (X = H, CH3, Cl, F, OCH3, N(CH3)2); cis-[PtCl2(PPh2R)2] (R = CH3, n-C3H7, n-C5H11, n-C6H13, n-C12H25) and cis-[PtCl2(PR3)2] (R = CH3, C2H5, CH2ch2CN). Relationships between the peak potentials for the Pt(II) → Pt(0) reduction and thermodynamic parameters which measure the electronic properties of the ligands are shown to exist for complexes of P{p-C6H4X}3 ligands, implying a thermodynamic origin for the sensitivity of the peak potentials to structural change. Complexes of both P{p-C6H4X}3 and PPh2R ligands show correlations between peak potentials for reduction and the 31P{1H} NMR spectroscopic parameter, 1J(195Pt, 31P). Correlations with values of δ(31P) exist in both cases, but a correlation with the coordination chemical shift, Δδ(31P), exists for complexes of PPh2R, and not for complexes of P{C6H4X}3. Complexes of PR3 ligands show no correlation between the peak potentials measured for the Pt(II) → Pt(0) reduction and electronic or spectroscopic parameters, except possibly 1J(195Pt, 31P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号