首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order classical field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the classical field equations. Second, the Lagrangian and Hamiltonian formalisms are unified by giving an extension of the Skinner–Rusk formulation on classical mechanics.  相似文献   

2.
In this paper, we consider an integrable approximation of the planar motion of a gyrostat in Newtonian interaction with a spherical rigid body. We then describe the Hamiltonian dynamics, in the fibers of constant total angular momentum vector of an invariant manifold of motion. Finally, using the Liouville-Arnold theorem and a particular analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. The results can be applied to study two-body roto-translatory problems where the rotation of one of them has a strong influence on the orbital motion of the system.   相似文献   

3.
We consider the uniqueness of the solution to a three-body problem with zero-range Skyrme interactions in configuration space. With the lowest, k0, two-body term alone the problem is known to have no unique solution as the system collapses – the variational estimate of the energy tends towards negative infinity, the size of the system towards zero. We argue that the next, k2, two-body term removes the collapse and the three-body system acquires finite ground-state energy and size. The three-body interaction term is thus not necessary to provide a unique solution to the problem.  相似文献   

4.
We consider the Dirac equation in 3+1 dimensions with spherical symmetry and coupling to 1/r singular vector potential. An approximate analytic solution for all angular momenta is obtained. The approximation is made for the 1/r orbital term in the Dirac equation itself not for the traditional and more singular 1/r 2 term in the resulting second order differential equation. Consequently, the validity of the solution is for a wider energy spectrum. As examples, we consider the Hulthén and Eckart potentials.  相似文献   

5.
We investigate the classical motion of three charged particles with both attractive and repulsive interactions. The triple collision is a main source of chaos in such three-body Coulomb problems. By employing the McGehee scaling technique, we analyze here for the first time in detail the three-body dynamics near the triple collision in 3 degrees of freedom. We reveal surprisingly simple dynamical patterns in large parts of the chaotic phase space. The underlying degree of order in the form of approximate Markov partitions may help in understanding the global structures observed in quantum spectra of two-electron atoms.  相似文献   

6.
In this work we generalise some previously obtained results concerning the quantisation of classical finite models according to the symmetric (Fermi-like) scheme of quantisation. We consider models whose dynamics is defined through some non-singular Lie bracket and show that we can make the dynamics with any prescribed bracket relations, as defined by a certain type ofnon-singular symmetric brackets, coexist. The quantisation scheme established is: (a) defined up to an arbitrary factor and, (b) sensitive to the addition of total time derivatives to the corresponding Lagrangian. Both unconstrained and constrained models are considered.  相似文献   

7.
It is shown that if one incorporates the generalized coordinate quantum velocitiesQ 1 as given byQ 1=l[H,Q 1](h=1) into the generalized classical Lagrangian for a free particle (the total energy),L=1/2Q 1 g tk Q k one does not obtain (no matter what ordering of the operatorsq l ,q k andg lkwe choose the correct quantum Lagrangian operator which is a transformation from -1/2V2 to generalized coordinates (Gruber, 1971, 1972).q l as given byq l=i[H,q l] turns out to be the Hermitian part of a more generaiized operator which we call the total generalized velocity operator similar to the notation in ear previous articles (Gruber, 1971, 1972). This total velocity operator really determines the fundamental structure governing our system in the Lagrangian formulation. We show that ft is through the total velocity operator that we make the transition from classical to quantum mechanics and through our procedure we arrive at the correct quantum Lagrangian operator.  相似文献   

8.
H. Moraal 《Physica A》1975,79(1):75-82
It is shown, that the configurational partition function for a classical system of molecules interacting with nonspherical pair potential is proportionals to the configurational partition function for a system of particles interacting with temperature-dependent spherical k-body potentials (k ?2). Therefore, the thermodynamic limit for nonspherical molecules exists if the effective k-body interaction is stable and tempered. A number of criteria for the nonspherical potential are developed which ensure these properties. In case the nonsphericity is small in a certain sense, stability and temperedness of the angle-averaged nonspherical potential are sufficient to ensure thermodynamic behaviour.  相似文献   

9.
We study the ground-state energy of a classical artificial molecule formed by two-dimensional clusters (artificial atoms) of N/2 charged particles separated by a distance d. For the small molecules of N = 2 and 4, we obtain analytical expressions for this energy. For the larger ones, we calculate the ground-state energy using molecular dynamics simulation for N up to 128. From our numerical results, we are able to find out a function to approximate the ground-state energy of the molecules covering the range from atoms to molecules for any inter-atom distance d and for particle number from N = 8 to 128 within a difference less than one percent from the MD data.  相似文献   

10.
We investigate exact nonlinear matter wave functions with odd and even parities in the framework of quasi-two-dimensional Bose–Einstein condensates (BECs) with spatially modulated cubic–quintic nonlinearities and harmonic potential. The existence condition for these exact solutions requires that the minimum energy eigenvalue of the corresponding linear Schrödinger equation with harmonic potential is the cutoff value of the chemical potential λ. The competition between two-body and three-body interactions influences the energy of the localized state. For attractive two-body and three-body interactions, the larger the matter wave order number n, the larger the energy of the corresponding localized state. A linear stability analysis and direct simulations with initial white noise demonstrate that, for the same state (fixed n), increasing the number of atoms can add stability. A quasi-stable ground-state matter wave is also found for repulsive two-body and three-body interactions. We also discuss the experimental realization of these results in future experiments. These results are of particular significance to matter wave management in higher-dimensional BECs.  相似文献   

11.
We report virial coefficients up to third order in density for molecular nitrogen, investigating 103 temperatures in the range (15 K, 3000 K). All calculations are based on an ab initio-based potential taken from the literature. Path-integral Monte Carlo (PIMC) is applied to account for nuclear quantum effects, and these results are compared to a more approximate but faster semiclassical treatment. Additionally, we examine a PIMC approach that employs semiclassical beads for the path-integral images, but find that it offers marginal advantage. A recently developed orientation sampling algorithm is used in conjunction with Mayer sampling to compute precise virial coefficients. We find that, within the precision of our calculations of the second-order coefficient (B2), semiclassical methods are adequate for temperatures greater than 250 K, and are needed to correct classical behaviour for temperatures as high as 800 K. For the third-order coefficient (B3), the semiclassical methods are adequate above 150 K, and are required up to the highest temperature examined (3000 K) in order to correct the classical treatment within the precision of the calculations. However, three-body contributions to the potential are much more significant than nuclear quantum effects for the evaluation of B3.  相似文献   

12.
In this paper, using the Maslov index theory in symplectic geometry, we build up some stability criteria for symmetric periodic orbits in a Hamiltonian system, which is motivated by the recent discoveries in the n-body problem. The key ingredient is a generalized Bott-type iteration formula for periodic solution in the presence of finite group action on the orbit. For second order system, we prove, under general boundary conditions, the close formula for the relationship between the Morse index of an orbit in a Lagrangian system and the Maslov index of the fundamental solution for the corresponding orbit in its Hamiltonian system counterpart, and the boundary conditions cover the cases which appeared in the n-body problem. As an application we consider the stability problem of the celebrated figure-eight orbit due to Chenciner and Montgomery in the planar three-body problem with equal masses, and we clarify the relationship between linear stability and its variational nature on various loop spaces. The basic idea is as follows: the variational characterization of the figure-eight orbit provides information about its Morse index; based on its relation to the Maslov index, our stability criteria come into play. Partially supported by NSFC (No.10801127) and the knowledge innovation program of the Chinese Academy of Science. Partially supported by NSFC (No.s 10401025, 10571123 and 10731080) and NSFB-FBEC (No. KZ20 0610028015).  相似文献   

13.
A Feynman formula is a representation of the semigroup, generated by an initial-boundary value problem for some evolutionary equation, by a limit of integrals over Cartesian powers of some space E, the integrands being some elementary functions. The multiple integrals in Feynman formulae approximate integrals with respect to some measures or pseudomeasures on sets of functions which take values in E and are defined on a real interval. Hence Feynman formulae can be used both to calculate explicitly solutions for such problems, to get some representations for these solutions by integrals over functions taking values in E (such representations are called Feynman-Kac formulae), to get approximations for transition probability of some diffusion processes and transition amplitudes for quantum dynamics and to get computer simulations for some stochastic and quantum dynamics. The Feynman formula is called a Hamiltonian Feynman formula if the space, Cartesian products of which are used, is the phase space of a classical Hamiltonian system; the corresponding Feynman-Kac formula is called a Hamiltonian Feynman-Kac formula. In the latter formula one integrates over functions taking values in the same phase space. In a similar way one can define Lagrangian Feynman formulae and Lagrangian Feynman-Kac formulae substituting the phase space by the configuration space.  相似文献   

14.
We study higher-order Lagrangian mechanics on thek-velocity manifold. The variational problem gives rise to new concepts, such as main invariants, Zermelo conditions, higher-order energies, and new conservation laws. A theorem of Noether type is proved for higher-order Lagrangians. The invariants to the infinitesimal symmetries are explicitly written. All this construction is a natural extension of classical Lagrangian mechanics.  相似文献   

15.
For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle [`(E)](kf)\ensuremath \bar E(k_f) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to [`(E)](kf) ~ kf10\ensuremath \bar E(k_f)\sim k_f^{10} with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction.  相似文献   

16.
We introduce the theory of multipolar fluids in which constitutive laws depend linearly not only on the first spatial gradients of velocity as in classical Navier-Stokes theory of newtonian fluids but also on its higher order spatial gradients up to the order 2k − 1, k = 2, 3,… Such fluids are called k-polar fluids. A thermodynamic theory of the constitutive equations satisfying the second law of thermodynamics and the principle of material frame indifference is developed. Special thermodynamic processes as isothermal, barotropic, adiabatic and general heat-conductive motion for compressible multipolar fluids are studied. It is well known that there does not exist adequate existence theory for compressible newtonian fluids. We given a consistent theory for compressible multipolar fluids in two or three dimensions, i. e. we prove the global in time existence of weak solutions for the initial boundary value problems in bounded domains for the systems of partial differential equations describing isothermal, barotropic, adiabatic and general compressible motion. Under some assumptions on the regularity of the initial data and external forces, we prove existence of strong solutions, uniqueness and regularity. Some other properties as e. g. cavitation of density are discussed. We put stress on the lowest possible polarity of the fluid. In the isothermal case we consider the polarity k ≧ 2 and in barotropic and heat-conductive gas the polarity k ≧ 3.  相似文献   

17.
The problem analyzed is the classical non-regularized Hamiltonian formulation of a restricted three body problem under the influence of Coulomb-interactions. Completing the large literature on Helium-like systems we will consider the motions around a fixed positive point charge of (i) one negative and one positive point charge as well as the “classical” issue of (ii) two negative point charges. Thereby, all our considerations deal with arbitrary positive and negative charge values of the mass particles. Here, we give necessary and sufficient conditions for the existence of genuine equilibria in such systems—recall that there are none in the usual classical Helium-atom—and analyze their linearized stability. The thus obtained insights allow us to study the dynamics near such genuine equilibria.  相似文献   

18.
We present the trigonometric Lax matrix and classical r matrix for the Kowalevski gyrostat on so(4) algebra by using auxiliary matrix algebras so(3,2) or sp(4). The text was submitted by the authors in English.  相似文献   

19.
This is the first of two papers devoted to the study of a nonlocal evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider subcritical temperatures, for which there are two local equilibria, and begin the proof of a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibria; i.e., the fronts. We shall show in the second paper that an initial perturbation v 0 of a front that is sufficiently small in L 2 norm, and sufficiently localized that x 2 v 0(x)2 dx<, yields a solution that relaxes to another front, selected by a conservation law, in the L 1 norm at an algebraic rate that we explicitly estimate. There we also obtain rates for the relaxation in the L 2 norm and the rate of decrease of the excess free energy. Here we prove a number of estimates essential for this result. Moreover, the estimates proved here suffice to establish the main result in an important special case.on leave from  相似文献   

20.
Abstract

This paper presents a linear transformation for low order nonlinear autonomous differential equations. The procedure consists of a trajectory-based local linearization, which approximates the nonlinear system in the neighborhood of its equilibria. The approximation is possible even in the non-hyperbolic case which is of a particular interest. The linear system is derived using an L 2 norm optimization and the method can be used to approximate the derivative at the equilibrium position. Unlike the classical linearization, the L 2 norm linearization depends on the initial state and has the same order as the nonlinearity. Simulation results show good agreement of the suggested method with the nonlinear system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号