首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Branching has a strong influence on the processability and properties of polymers. However, the accurate characterization of branched polymers is genuinely difficult. Branched molecules of a certain molecular weight exhibit the same hydrodynamic volumes as linear molecules of substantially lower weights. Therefore, separation by size-exclusion chromatography (SEC), will result in the co-elution of molecules with different molecular weights and branching characteristics. Chromatographic separation of the polymer molecules in sub-microm channels, known as molecular-topology fractionation (MTF), may provide a better separation based on topological differences among sample molecules. MTF elution volumes depend on both the topology and molar mass. Therefore co-elution of branched molecules with linear molecules of lower molar mass may also occur in this separation. Because SEC and MTF exhibit significantly different selectivity, the best and clearest separations can be achieved by combining the two techniques in a comprehensive two-dimensional (MTFxSEC) separation system. In this work such a system has been used to demonstrate branching-selective separations of star branched polymers and of randomly long-chain-branched polymers. Star-shaped polymers were separated from linear polymers above a column-dependent molecular weight or size.  相似文献   

2.
Starch and glycogen are highly branched polymers of glucose of great importance to humans in managing and mitigating nutrition-related diseases, especially diabetes and obesity, and in industrial uses, for example in food and paper-making. Size-separation characterization using multiple-detection size-exclusion chromatography (SEC, also known as gel-permeation chromatography, GPC) is able to furnish substantial amounts of information on the relationships between the biosynthesis, processing, structure, and properties of these biopolymers, and achieves superior characterization for use in industrial product and process improvements. Multi-detector SEC is able to give much more information about structure than simple averages such as total molecular weight or size; the detailed information yielded by this technique has already given new information on important biosynthesis-structure-property reactions, and has considerable potential in this field in the future. However, it must be used with care to avoid artifacts arising from incomplete dissolution of the substrate and shear scission during separation. It is also essential in interpreting data to appreciate that this size-separation technique can only ever give size distributions, never true molecular weight distributions. Other size-separation techniques, particularly field-flow fractionation, require substantial technical development to be used on undegraded native starches.  相似文献   

3.
Liquid chromatography (LC) is a powerful tool for the characterization of synthetic polymers, that are inherently heterogeneous in molecular weight, chain architecture, chemical composition, and microstructure. Of different versions of the LC methods, size exclusion chromatography (SEC) is most commonly used for the molecular weight distribution analysis. SEC separates the polymer molecules according to the size of a polymer chain, a well‐defined function of molecular weight for linear homopolymers. The same, however, cannot be said of nonlinear polymers or copolymers. Hence, SEC is ill suited for and inefficient in separating the molecules in terms of chemical heterogeneity, such as differences in chemical composition of copolymers, tacticity, and functionality. For these purposes, another chromatographic method called interaction chromatography (IC) is found as a better tool because its separation mechanism is sensitive to the chemical nature of the molecules. The IC separation utilizes the enthalpic interactions to vary adsorption or partition of solute molecules to the stationary phase. Thus, it is used to separate polymers in terms of their chemical composition distribution or functionality. Further, the IC method has been shown to give rise to much higher resolution over SEC in separating polymers by molecular weight. We present here our recent progress in polymer characterization with this method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1591‐1607, 2005  相似文献   

4.
Preparations and properties of synthetic uniform polyolefins and polymethacrylates are described with emphasizing the necessity of their utilization for understanding the fundamental problems in polymer chemistry. Uniform polymer is a polymer composed of molecules uniform with respect to molecular weight and constitution. While classical organic chemistry provides means of constructing uniform polymers such as poly(methylene)s in stepwise manners, recent advances in separation technology such as supercritical fluid chromatography (SFC) have made it possible to isolate synthetic uniform polymers from its homologous mixture. Combinations of stereospecific polymerizations and the SFC technique have enabled us to prepare uniform polystyrenes and poly(methyl methacrylate)s with high stereoregularities, which are very useful for systematic studies on the nature of polymers. The thermal properties of these uniform polymers are discussed in some detail.  相似文献   

5.
Size-exclusion chromatography (SEC) and size-exclusion electrochromatography (SEEC) are chromatographic techniques used to determine molecular mass (weight) distributions (MWD) of polymers. One important step in the data treatment to derive MWD parameters is the modelling of the calibration curves. The calibration curves applied in SEC and SEEC are generally not linear. In this study the modelling of calibration curves is being examined. Different polynomial models have been evaluated and compared, not only for model fit but also for their predictive properties. It was found that sometimes a straight line and sometimes a third-order polynomial model were best. The best model across the effective range (also called linear range) is not always found to be a straight line. The SEEC curves were found to have considerably higher prediction errors than the SEC ones. Reduction of the number of calibration standards to five or six did not greatly affect the predictive properties of the calibration curves, neither in SEC nor in SEEC.  相似文献   

6.
Size-exclusion chromatography (SEC) enables measurement of the average molecular weights and molecular-weight distributions of polymers. Because these characteristics may, in turn, be correlated with important performance characteristics of plastics, SEC is an essential analytical technique for characterization of macromolecules. Although SEC is one of the oldest instrumental chromatographic techniques, it is still under continuous development, as a result of the great demand for increased resolution and faster analysis in SEC. Ultra-high-pressure size-exclusion chromatography (UHPSEC) was recently introduced to satisfy the growing demands of analytical chemists. Using instrumentation capable of generating very high pressures and columns packed with small particles, this technique enables greater separation efficiency and faster analysis than are achieved with conventional SEC. UHPSEC is especially advantageous for high-resolution analysis of oligomers, for very rapid polymer separations, and as a second dimension in comprehensive two-dimensional liquid chromatography of polymers. In this paper we discuss the benefits of UHPSEC for separation of macromolecules, with examples from the literature.  相似文献   

7.
Branched polystyrenes (PS) featuring a bivariate distribution in the molecular weight and in the number of branches were characterized by comprehensive two-dimensional liquid chromatography (2D-LC). The branched PS were prepared by anionic polymerization using n-butyl Li as an initiator and a subsequent linking reaction with p-(chlorodimethylsilyl)styrene (CDMSS). The n-butyl Li initiator yields polystyryl anions with broad molecular weight distribution (MWD) and the linking reaction with CDMSS yields branched PS with different number of branches. For the first dimension (1st-D) separation, reversed-phase temperature gradient interaction chromatography (RP-TGIC) was employed to separate the branched polymer according to mainly the molecular weight. In the second dimension (2nd-D) separation, the effluents from the RP-TGIC separation are subjected to liquid chromatography at chromatographic critical conditions (LCCC), in which the separation was carried out at the critical condition of linear homo-PS to separate the branched PS in terms of the number of branches. The 2D-LC resolution of RP-TGICxLCCC combination worked better than the common LCCCxsize-exclusion chromatography (SEC) configuration due to the higher resolution of RP-TGIC in molecular weight than SEC. Furthermore, by virtue of using the same eluent in RP-TGIC and LCCC (only the column temperature is different), RP-TGICxLCCC separation is free from possible 'break through' and large system peak problems. This type of 2D-LC separation could be utilized efficiently for the analysis of branched polymers with branching units distinguishable by LC separation.  相似文献   

8.
The application of high temperature comprehensive two-dimensional (2D) liquid chromatography for quantitative characterization of chemical composition and molecular weight (MW) heterogeneities in polyolefins is demonstrated in this study by separating a physical blend of isotactic-polypropylene, ethylene-random-propylene copolymer, and high density polyethylene. The first dimension separation is based on adsorption liquid chromatography that fractionates the blend from low to high ethylene content. The second dimension is size-exclusion chromatography connected with light scattering (LS) and infrared (IR) detectors. The IR detector shows desired sensitivity and linearity for monitoring analyte concentrations in the eluent after 2D separations. In addition, the compositions of the analytes are also determined from the ratio of two IR absorbances at the specified wavelength regions, an absorbance for measuring the level of methyl groups in polyolefins and another absorbance for measuring concentration. The LS detector is used to determine absolute molecular weight of the analytes from the ratio of the light scattering signal to the IR concentration signal. The ability to obtain concentration, chemical composition, and MW of polyolefins after 2D separation provides new opportunities to discover structure-property relationships for polyolefins with complex structures/architectures.  相似文献   

9.
A more complete understanding of polymeric, cationic cellulose derivatives, including polyquaterium-10 (Polymer JR), has become increasingly important in the eye care industry as thorough characterization of raw materials helps promote product quality and process control. Often such detailed information requires utilization of a combination of analytical techniques. In this work three Polymer JR samples with different viscosities were characterized using aqueous size exclusion chromatography (SEC) with a light scattering detector, a differential viscometer, and a differential refractometer (triple detection). Detailed molecular information such as absolute molecular weights, molecular weight distributions, intrinsic viscosities, and molecular conformations were obtained. One major challenge of analyzing cationic polymers is abnormal size exclusion separation, which could be caused by the ionic interaction between sample molecules and the column packing material. A selection of mobile phases varying in pH, buffer, organic solvent content, and molar concentration of salts was employed to evaluate the correlation of obtained molecular weight values and mobile phase composition. Universal calibration concept was used to examine the abnormal size exclusion separation phenomenon of Polymer JR samples when using different mobile phases. It was observed that the abnormal size exclusion was dependent on both the separation conditions and molecular weights of the samples. Despite the changes in separation parameters and uncharacteristic polymeric structure compared to conventional SEC samples, the use of aqueous SEC with triple detection provided reproducible and valuable molecular information of Polymer JR samples with low to medium molecular weights. By using a combination of high buffer content and adding organic solvent, the abnormal exclusion separation of high molecular weigh Polymer JR could be considerably reduced.  相似文献   

10.
王茜茜  戴璐  介素云  李伯耿 《高分子学报》2020,(3):277-286,I0003
采用烯烃复分解法,以双烯烃橡胶为原料,在Grubbs II代催化剂和链转移剂(马来酸)的作用下制得相应的端羧基聚二烯烃,通过对甲苯磺酰肼/三正丙胺试剂对其进一步加氢得到端羧基聚烯烃.主要研究了反应时间、反应温度、橡胶中双键/催化剂摩尔比、橡胶中双键/链转移剂摩尔比等因素对产物分子量及分子量分布的影响.通过核磁共振氢谱(1H-NMR)和碳谱(13C-NMR)、红外光谱(FTIR)、凝胶渗透色谱仪(GPC)、热重分析(TGA)和示差扫描量热分析(DSC)对产物的结构和性能进行了测试表征.结果表明,通过调整橡胶中双键/催化剂的摩尔比或橡胶中双键/链转移剂的摩尔比可以调控产物的分子量.另外,采用该方法制得的端羧基聚丁二烯具有较高的反式1,4-结构含量,与原料相比其顺式1,4-结构含量大幅下降,从而对产物的性能产生一定影响;而以异戊橡胶为原料时并没有观察到该现象.端羧基聚二烯烃经加氢反应后转变成端羧基聚烯烃,具有更好的热稳定性.该方法合成步骤简单,产物分子量可控,为功能材料的制备提供了新的可能.  相似文献   

11.
高效液相色谱表征高聚物*   总被引:1,自引:0,他引:1  
钟亚兰  蒋序林 《化学进展》2010,22(4):706-712
最常用的测试高聚物的分子量和分子量分布的体积排除色谱(SEC)是高效液相色谱 (HPLC)的一个重要分支,HPLC的另一个重要分支是相互作用液相色谱, 它是20世纪90年代开始用于高分子分离和表征的研究领域。相互作用液相色谱可以根据高分子的化学结构(如共混物组成、共聚物组成、端基)来分离,它比SEC 有更高的分离效率。本文介绍了高聚物液相色谱的分离模式,并就高聚物体积排除色谱、相互作用液相色谱、临界液相色谱和全二维液相色谱用于分离和表征高聚物的研究进展进行了较系统的综述,并对该技术目前存在的问题和今后可能的发展前景进行了探讨。  相似文献   

12.
Size exclusion chromatography (SEC) is capable of evaluating the molecular weight distribution (MWD) of a sample. Information about the chemical composition distribution can be gained by gradient high performance liquid chromatography (gradient HPLC), where a poor starting eluent is, in the course of the separation, substituted by another one of increasing elution strength. Both normal-phase and reversed-phase systems can be employed. The combination of SEC and gradient HPLC enables chromatographic cross-fractionation to be performed efficiently.  相似文献   

13.
Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.  相似文献   

14.
Ultrahigh-molar-mass (M) polymers such as DNA, cellulose, and polyolefins are routinely analyzed using size-exclusion chromatography (SEC) to obtain molar mass averages, distributions, and architectural information. It has long been contended that high-M polymers can degrade during SEC analysis; if true, the inaccurate molar mass information obtained can adversely affect decisions regarding processing and end-use properties of the macromolecules. However, most evidence to the effect of degradation has been circumstantial and open to alternative interpretation. For example, the shift in SEC elution volume as a function of increased chromatographic flow rate, observed using only a concentration-sensitive detector, may be the result of degradation or of elution via a nondegradatory slalom chromatography mechanism. Here, using both concentration-sensitive and multiangle static light-scattering detection, we provide unambiguous evidence that the polysaccharide alternan actually degrades during SEC analysis. The decrease in molar mass and size of alternan with increasing flow rate, measured using light scattering, allows ruling out an SC mode of elution and can only be interpreted as due to degradation. These findings demonstrate the extreme fragility of ultrahigh-M polymers and the care that must be taken for accurate characterization. Figure Scission of alternan chains in liquid chromatography.  相似文献   

15.
Summary Controlled-porosity glasses (CPG) are sieves for macromoleculars, very widely applied in chromatographic columns for the separation of polymers and biopolymers by means of size-exclusion chromatography (SEC) and affinity chromatography. This paper deals with the influence of the thermal treatment of CPG on the elution of polymers in SEC columns. The problem is examined for a few mobile phases and for glasses having different porosities. Additionally, the SEC results obtained are compared with the adsorption properties of the glases investigated.  相似文献   

16.
Rapid high‐performance liquid chromatography (HPLC) of polystyrenes, poly(methyl methacrylates), poly(vinyl acetates), and polybutadienes using a monolithic 50 × 4.6 mm i.d. poly(styrene‐co‐divinylbenzene) column have been carried out. The separation process involves precipitation of the macromolecules on the macroporous monolithic column followed by progressive elution utilizing a gradient of the mobile phase. Depending on the character of the separated polymer, solvent gradients were composed of a poor solvent such as water, methanol, or hexane and increasing amounts of a good solvent such as THF or dichloromethane. Monolithic columns are ideally suited for this technique because convection through the large pores of the monolith enhances the mass transport of large polymer molecules and accelerates the separation process. Separation conditions including the selection of a specific pair of solvent and precipitant, flow rate, and gradient steepness were optimized for the rapid HPLC separations of various polymers that differed broadly in their molecular weights. Excellent separations were obtained demonstrating that the precipitation‐redissolution technique is a suitable alternative to size‐exclusion chromatography (SEC). The molecular weight parameters calculated from the HPLC data match well those obtained by SEC. However, compared to SEC, the determination of molecular parameters using gradient elution could be achieved at comparable flow rates in a much shorter period of time, typically in about 1 min. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2767–2778, 2000  相似文献   

17.
Asymmetric flow field-flow fractionation (AF4) enables to analyse polymers with very high molar masses under mild conditions in comparison to size exclusion chromatography (SEC). Conventionally, membranes for AF4 are made from cellulose. Recently, a novel ceramic membrane has been developed which can withstand high temperatures above 130 °C and chlorinated organic solvents, thus making it possible to characterise semicrystalline polyolefins by HT-AF4. Two ceramic membranes and one cellulose membrane were compared with regard to their quality of molar mass separation and the loss of the polymer material through the pores. Separating polystyrene standards as model compounds at different cross-flow gradients the complex relationship between cross-flow velocity, separation efficiency, the molar mass and peak broadening could be elucidated in detail. Moreover, the dependence of signal quality and reproducibility on sample concentration and mass loading was investigated because the evaluation of the obtained fractograms substantially depends on the signal intensities. Finally, the performance of the whole system was tested at high temperature by separating PE reference materials of high molar mass.  相似文献   

18.
The high-temperature gas chromatographic (GC) separation of several semivolatile compounds is studied with a short metal capillary column packed with fibrous material, having a polydimethylsiloxane coating thereon. Taking advantage of the excellent heat-resistance of the fiber and also the combination of the surface-deactivated metal capillary, a temperature-programmed separation up to 450 degrees C is successfully demonstrated for the separation of polymer standard samples. The average molecular weight of the commercially-available polymer standard samples for size exclusion chromatography (SEC) is estimated by high-temperature GC analysis and compared with the nominal value determined by a conventional SEC method. Although a slight deviation for the number-average molecular weight is observed between the GC and SEC analysis, the data for the weight-average molecular weight shows a good agreement in these methods. The results also suggest the future possibility of the fiber-packed metal capillary as a miniaturized GC column with an increased sample loading capacity.  相似文献   

19.
Polyolefins containing long chain branches can be synthesized using certain metallocene catalysts such as Dow Chemical's constrained geometry catalyst. These polyolefins combine the excellent mechanical properties of polymers with narrow molecular weight distribution with the easy processability of polymers containing long chain branches. A mathematical model for the chain length distribution for these novel polyolefins was derived from basic principles and an analytical solution for the chain length distributions of the populations containing different number of long chain branches per polymer molecule was obtained. The analytical solution agrees with the direct solution of the population balances and with a Monte-Carlo simulation model. It is also shown that this solution applies for copolymers using pseudo-kinetic rate constants and Stockmayer's bivariate distribution.  相似文献   

20.
Since the introduction of stationary phases based on microparticulate porous silica and polymeric sorbents, rigid and semi-rigid, size-exclusion chromatography (SEC) has become established as a form of high-performance liquid chromatography. In recent years, there have beeen revolutionary developments in detection systems for high-performance SEC, which have placed the use of the method for the determination of molecular-size and molecular-weight distributions of polymers on a sound theoretical basis andincreased the range of information on molecular characteristics that can be retrieved from SEC data. This review surveys these changes in SEC systems and their application to the separation and molecular-weight distribution analysis of carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号