首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the solutions of steady as well as unsteady three-dimensional incompressible thermal boundary layer equations and the study of the response of heat transfer when there is a parabolic flow over a moving flat plate. The components of velocity in boundary layer are discussed by Sarma and Gupta and those results are used to analyse thermal boundary layer equations. A general analysis is made from which we deduce (i) Solutions of two-dimensional thermal boundary layer on a moving flat plate, (ii) Solutions of thermal boundary layer on a yawed flat plate, (iii) Solutions of thermal boundary layer when there is a parabolic flow over a moving flat plate by giving different values to β and Cx. Solutions are developed for large and small times and curves are drawn representing the variations of heat transfer from the plate with time for all the cases. The limiting time is also calculated.  相似文献   

2.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

3.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

4.
In this paper the boundary layer flow over a flat plat with slip flow and constant heat flux surface condition is studied. Because the plate surface temperature varies along the x direction, the momentum and energy equations are coupled due to the presence of the temperature gradient along the plate surface. This coupling, which is due to the presence of the thermal jump term in Maxwell slip condition, renders the momentum and energy equations non-similar. As a preliminary study, this paper ignores this coupling due to thermal jump condition so that the self-similar nature of the equations is preserved. Even this fundamental problem for the case of a constant heat flux boundary condition has remained unexplored in the literature. It was therefore chosen for study in this paper. For the hydrodynamic boundary layer, velocity and shear stress distributions are presented for a range of values of the parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the molecules reflected diffusively at the surface. As the slip parameter increases, the slip velocity increases and the wall shear stress decreases. These results confirm the conclusions reached in other recent studies. The energy equation is solved to determine the temperature distribution in the thermal boundary layer for a range of values for both the slip parameter as well as the fluid Prandtl number. The increase in Prandtl number and/or the slip parameter reduces the dimensionless surface temperature. The actual surface temperature at any location of x is a function of the local Knudsen number, the local Reynolds number, the momentum accommodation coefficient, Prandtl number, other flow properties, and the applied heat flux.  相似文献   

5.
An analytical study for the problem of unsteady mixed convection with thermal radiation and first-order chemical reaction on magnetohydrodynamics boundary layer flow of viscous, electrically conducting fluid past a vertical permeable plate has been presented. Slip boundary condition is applied at the porous interface. The classical model is used for studying the effect of radiation for optically thin media. The non-linear coupled partial differential equations are solved by perturbation technique. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, thermal stratification and magnetic field. It is observed that the effect of thermal radiation and magnetic field decreases the velocity, temperature and concentration profiles in the boundary layer. Also, the effects of the various parameters on the skin-friction coefficient and the rate of heat transfer at the surface are discussed.  相似文献   

6.
The spatial stability properties of a mixed convection boundary layer developing over a heated horizontal plate is studied here under linear and quasi-parallel flow assumption. The main aim of the present work is to find out if there is a critical buoyancy parameter that would indicate the importance of heat transfer in destabilizing mixed convection boundary layers, when the buoyancy effect is given by Boussinesq approximation. The undisturbed flow used here is that given by the similarity solution of [ 1 ] that implies the wall temperature to vary as the inverse square root of the distance from the leading edge of the plate. The stability of this flow has been investigated by using the compound matrix method (CMM)—that allows finding all the modes in the chosen range in the complex wave number plane for spatial stability analysis. Presented neutral curves for mixed convection boundary layer show the existence of two types of disturbances present simultaneously, for large buoyancy parameter. One notices very unstable high-frequency mode when the buoyancy parameter exceeds the above-mentioned critical value. This unstable thermal mode is in addition to the hydrodynamic mode of isothermal flow given by corresponding similarity profile. The calculated critical buoyancy parameter is shown to qualitatively match with experimental results.  相似文献   

7.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

8.
The present paper is concerned with the study of flow and heat transfer characteristics in the unsteady laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of a non-uniform heat source/sink and thermal radiation. The unsteadiness in the flow and temperature fields is because of the time-dependent stretching velocity and surface temperature. Similarity transformations are used to convert the governing time-dependent nonlinear boundary layer equations for momentum and thermal energy are reduced to a system of nonlinear ordinary differential equations containing Prandtl number, non-uniform heat source/sink parameter, thermal radiation and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge–Kutta–Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the unsteadiness parameter, thermal radiation, suction/injection parameter, non-uniform heat source/sink parameter on flow and heat transfer characteristics as well as on the local Nusselt number are shown graphically.  相似文献   

9.
The stability of an elastic plate in a supersonic gas flow is considered in the presence of a boundary layer formed on the surface of the plate. The problem is solved in two statements. In the first statement, the plate is of large but finite length, and a coupled-mode type of flutter is examined (the effect of the boundary layer on another, single-mode, type of flutter has been studied earlier). In the second statement, the plate is assumed to be infinite, and the character of its instability (absolute or convective) is analyzed. In both cases, the instability is determined by a branch point of the roots of the dispersion equation, and the mathematical analysis is the same. It is proved that instability in a uniform gas flow is weakened by a boundary layer but cannot be suppressed completely, while in the case of a stable plate in a uniform flow the boundary layer leads to the destabilization of the plate.  相似文献   

10.
This paper presents a relatively simple numerical method to investigate the flow and heat transfer of laminar power-law fluids over a semi-infinite plate in the presence of viscous dissipation and anisotropy radiation. On one hand, unlike most classical works, the effects of power-law viscosity on velocity and temperature fields are taken into account when both the dynamic viscosity and the thermal diffusivity vary as a power-law function. On the other hand, boundary layer equations are derived by Taylor expansion, and a mixed analytical/numerical method (a pseudo-similarity method) is proposed to effectively solve the boundary layer equations. This method has been justified by comparing its results with those of the original governing equations obtained by a finite element method. These results agree very well especially when the Reynolds number is large. We also observe that the robustness and accuracy of the algorithm are better when thermal boundary layer is thinner than velocity boundary layer.  相似文献   

11.
王强  徐涛  姚永涛 《应用数学和力学》2022,43(10):1105-1112
基于有限差分法开发了高超声速流动与换热问题气热耦合仿真求解器,运用该求解器对三种典型高超声速流动与换热问题开展了仿真研究,得到了相应的气动参数、热流密度分布。高超声速后台阶的存在使表面气动参数、热流分布不再连续;随着缝深的提高,缝隙局部流速迅速降低,对流换热效应减弱;高超声速无限长圆管绕流中,边界层外部区域气动参数随时间变化不大,边界层内存在较大的温度梯度,壁面温度随时间升高。三个算例的仿真结果均与试验测量值进行了对比,验证了所开发的求解器的计算能力。  相似文献   

12.
The steady boundary layer flow past a moving horizontal flat plate with a slip effect at the plate in a free stream with constant speed, slightly different from the plate speed is studied. An analytic perturbation solution of order two is obtained for the velocity. With respect to the parallel flow both the boundary layer and the inverted boundary layer characters of the flow are plotted and discussed. It is observed that under high slip, the flow becomes a nearly parallel flow with an increased speed.  相似文献   

13.
This paper concerns with studying the steady and unsteady MHD micropolar flow and mass transfers flow with constant heat source in a rotating frame of reference in the presence chemical reaction of the first-order, taking an oscillatory plate velocity and a constant suction velocity at the plate. The plate velocity is assumed to oscillate in time with a constant frequency; it is thus assumed that the solutions of the boundary layer are the same oscillatory type. The governing dimensionless equations are solved analytically after using small perturbation approximation. The effects of the various flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. Numerical results of velocity profiles of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. The results show that there exists completely oscillating behavior in the velocity distribution.  相似文献   

14.
15.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

16.
Magneto-hydrodynamics and thermal radiation effects on heat and mass transfer in steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate embedded in a fluid saturated porous media in the presence of the thermophoresis particle deposition effect is studied in this paper. The governing equations are transformed by special transformations. Brownian motion of particles and thermophoretic transport are considered in the flow equations. The magnetic field is considered to be applied. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically by the fourth-order Runge–Kutta method with shooting technique. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on the wall thermophoretic deposition velocity, concentration, temperature and velocity profiles.  相似文献   

17.
In the present investigation we have analyzed the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. The effects of thermal radiation are carried out for two cases of heat transfer analysis known as (1) Prescribed exponential order surface temperature (PEST) and (2) Prescribed exponential order heat flux (PEHF). The highly nonlinear coupled partial differential equations of Jeffrey fluid flow along with the energy equation are simplified by using similarity transformation techniques based on boundary layer assumptions. The reduced similarity equations are then solved analytically by the homotopy analysis method (HAM). The convergence of the HAM series solution is obtained by plotting (h/2p)\hbar-curves for velocity and temperature. The effects of physical parameters on the velocity and temperature profiles are examined by plotting graphs.  相似文献   

18.
Based on the von Kármán geometric nonlinear plate theory, the displacement⁃type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2⁃point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer⁃thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness⁃radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

19.
Summary The temperature field produced by a finite, hot plate at zero incidence in uniform channel flow is solved exactly for the limiting case of zero prandtl number by means of the Wiener-Hopf technique. The heat transfer on the plate is found to agree with the corresponding boundary layer result over most of the plate for Péclét numbers as low as ten. Extensions to similar Ossen-flow problems are indicated.  相似文献   

20.
研究不可压缩粘性导电流体,流过半无限竖直可渗透平板时,将其偏微分形式的流动和传热的基本控制方程,应用适当的相似变换,简化为非线性的常微分方程组.对两种抽吸参数:大的和小的抽吸参数,采用摄动法得到变换后方程的近似解.数值结果表明,随着磁场参数和抽吸参数的增大,任意点的速度场在减小;磁场参数的影响,引起热边界层厚度的增大;速度和温度场随着热汇参数的增大而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号