首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ?d is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large‐sample asymptotic behavior of the total power‐weighted length of the ONG on uniform random points in (0,1)d. In particular, for d = 1 and weight exponent α > 1/2, the limiting distribution of the centered total weight is characterized by a distributional fixed‐point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest‐neighbor (directed) graph on uniform random points in the unit interval. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

2.
We study quasi‐random properties of k‐uniform hypergraphs. Our central notion is uniform edge distribution with respect to large vertex sets. We will find several equivalent characterisations of this property and our work can be viewed as an extension of the well known Chung‐Graham‐Wilson theorem for quasi‐random graphs. Moreover, let Kk be the complete graph on k vertices and M(k) the line graph of the graph of the k‐dimensional hypercube. We will show that the pair of graphs (Kk,M(k)) has the property that if the number of copies of both Kk and M(k) in another graph G are as expected in the random graph of density d, then G is quasi‐random (in the sense of the Chung‐Graham‐Wilson theorem) with density close to d. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

3.
A 1‐factorization of a graph G is a collection of edge‐disjoint perfect matchings whose union is E(G). In this paper, we prove that for any ?>0, an (n,d,λ)‐graph G admits a 1‐factorization provided that n is even, C0dn?1 (where C0=C0(?) is a constant depending only on ?), and λd1??. In particular, since (as is well known) a typical random d‐regular graph Gn,d is such a graph, we obtain the existence of a 1‐factorization in a typical Gn,d for all C0dn?1, thereby extending to all possible values of d results obtained by Janson, and independently by Molloy, Robalewska, Robinson, and Wormald for fixed d. Moreover, we also obtain a lower bound for the number of distinct 1‐factorizations of such graphs G, which is better by a factor of 2nd/2 than the previously best known lower bounds, even in the simplest case where G is the complete graph.  相似文献   

4.
Liggett and Steif (2006) proved that, for the supercritical contact process on certain graphs, the upper invariant measure stochastically dominates an i.i.d. Bernoulli product measure. In particular, they proved this for and (for infection rate sufficiently large) d‐ary homogeneous trees Td. In this paper, we prove some space‐time versions of their results. We do this by combining their methods with specific properties of the contact process and general correlation inequalities. One of our main results concerns the contact process on Td with . We show that, for large infection rate, there exists a subset Δ of the vertices of Td, containing a “positive fraction” of all the vertices of Td, such that the following holds: The contact process on Td observed on Δ stochastically dominates an independent spin‐flip process. (This is known to be false for the contact process on graphs having subexponential growth.) We further prove that the supercritical contact process on observed on certain d‐dimensional space‐time slabs stochastically dominates an i.i.d. Bernoulli product measure, from which we conclude strong mixing properties important in the study of certain random walks in random environment.  相似文献   

5.
For a connected noncomplete graph G, let μ(G):=min{max {dG(u), dG(v)}:dG(u, v)=2}. A well‐known theorem of Fan says that every 2‐connected noncomplete graph has a cycle of length at least min{|V(G)|, 2μ(G)}. In this paper, we prove the following Fan‐type theorem: if G is a 3‐connected noncomplete graph, then each pair of distinct vertices of G is joined by a path of length at least min{|V(G)|?1, 2μ(G)?2}. As consequences, we have: (i) if G is a 3‐connected noncomplete graph with , then G is Hamilton‐connected; (ii) if G is a (s+2)‐connected noncomplete graph, where s≥1 is an integer, then through each path of length s of G there passes a cycle of length≥min{|V(G)|, 2μ(G)?s}. Several results known before are generalized and a conjecture of Enomoto, Hirohata, and Ota is proved. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 265–282, 2002 DOI 10.1002/jgt.10028  相似文献   

6.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

7.
A linear space S is dhomogeneous if, whenever the linear structures induced on two subsets S1 and S2 of cardinality at most d are isomorphic, there is at least one automorphism of S mapping S1 onto S2. S is called dultrahomogeneous if each isomorphism between the linear structures induced on two subsets of cardinality at most d can be extended into an automorphism of S. We have proved in [11;] (without any finiteness assumption) that every 6‐homogeneous linear space is homogeneous (that is d‐homogeneous for every positive integer d). Here we classify completely the finite nontrivial linear spaces that are d‐homogeneous for d ≥ 4 or d‐ultrahomogeneous for d ≥ 3. We also prove an existence theorem for infinite nontrivial 4‐ultrahomogeneous linear spaces. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 321–329, 2000  相似文献   

8.
This paper considers some random processes of the form X n+1=T X n +B n (mod p) where B n and X n are random variables over (ℤ/pℤ) d and T is a fixed d×d integer matrix which is invertible over the complex numbers. For a particular distribution for B n , this paper improves results of Asci to show that if T has no complex eigenvalues of length 1, then for integers p relatively prime to det (T), order (log p)2 steps suffice to make X n close to uniformly distributed where X 0 is the zero vector. This paper also shows that if T has a complex eigenvalue which is a root of unity, then order p b steps are needed for X n to get close to uniformly distributed for some positive value b≤2 which may depend on T and X 0 is the zero vector.  相似文献   

9.
An (n, M, d)q code is a q‐ary code of length n, cardinality M, and minimum distance d. We show that there exists no (15,5,4) resolvable balanced incomplete block design (RBIBD) by showing that there exists no (equidistant) (14,15,10)3 code. This is accomplished by an exhaustive computer search using an orderly algorithm combined with a maximum clique algorithm. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 357–362, 2001  相似文献   

10.
It is proved that the internal path length of a d‐dimensional quad tree after normalization converges in distribution. The limiting distribution is characterized as a fixed point of a random affine operator. We obtain convergence of all moments and of the Laplace transforms. The moments of the limiting distribution can be evaluated from the recursion and lead to first order asymptotics for the moments of the internal path lengths. The analysis is based on the contraction method. In the final part of the paper we state similar results for general split tree models if the expectation of the path length has a similar expansion as in the case of quad trees. This applies in particular to the m‐ary search trees. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 5: 25–41, 1999  相似文献   

11.
In 2003, O. V. Borodin and A. Raspaud conjectured that every planar graph with the minimum distance between triangles, dΔ, at least 1 and without 5‐cycles is 3‐colorable. This Bordeaux conjecture (Brdx3CC) has common features with Havel's (1970) and Steinberg's (1976) 3‐color problems. A relaxation of Brdx3CC with dΔ?4 was confirmed in 2003 by Borodin and Raspaud, whose result was improved to dΔ?3 by Borodin and A. N. Glebov (2004) and, independently, by B. Xu (2007). The purpose of this article is to make the penultimate step (dΔ?2) towards Brdx3CC. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 1–31, 2010  相似文献   

12.
We prove that random d‐regular Cayley graphs of the symmetric group asymptotically almost surely have girth at least (logd‐1|G|)1/2/2 and that random d‐regular Cayley graphs of simple algebraic groups over ??q asymptotically almost surely have girth at least log d‐1|G|/dim(G). For the symmetric p‐groups the girth is between loglog |G| and (log |G|)α with α < 1. Several conjectures and open questions are presented. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

13.
We study the asymptotic, long-time behavior of the energy function where {Xs : 0 ≤ s < ∞} is the standard random walk on the d-dimensional lattice Zd, 1 < α ≤ 2, and f:R+ → R+ is any nondecreasing concave function. In the special case f(x) = x, our setting represents a lattice model for the study of transverse magnetization of spins diffusing in a homogeneous, α-stable, i.i.d., random, longitudinal field {λV(x) : x ∈ Zd} with common marginal distribution, the standard α-symmetric stable distribution; the parameter λ describes the intensity of the field. Using large-deviation techniques, we show that Sc(λ α f) = limt→∞ E(t; λ f) exists. Moreover, we obtain a variational formula for this decay rate Sc. Finally, we analyze the behavior Sc(λ α f) as λ → 0 when f(x) = xβ for all 1 ≥ β > 0. Consequently, several physical conjectures with respect to lattice models of transverse magnetization are resolved by setting β = 1 in our results. We show that Sc(λ, α, 1) ≈ λα for d ≥ 3, λagr;(ln 1/λ)α−1 in d = 2, and in d = 1. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A t‐(υ, k, λ) design is a set of υ points together with a collection of its k‐subsets called blocks so that all subsets of t points are contained in exactly λ blocks. The d‐dimensional projective geometry over GF(q), PG(d, q), is a 2‐(qd + qd−1 + … + q + 1, q + 1, 1) design when we take its points as the points of the design and its lines as the blocks of the design. A 2‐(υ, k, 1) design is said to be resolvable if the blocks can be partitioned as ℛ = {R1, R2, …, Rs}, where s = (υ − 1)/(k−1) and each Ri consists of υ/k disjoint blocks. If a resolvable design has an automorphism σ which acts as a cycle of length υ on the points and σ = , then the design is said to be point‐cyclically resolvable. The design associated with PG(5, 2) is known to be resolvable and in this paper, it is shown to be point‐cyclically resolvable by enumerating all inequivalent resolutions which are invariant under a cyclic automorphism group G = 〈σ〉 where σ is a cycle of length 63. These resolutions are the only resolutions which admit a point‐transitive automorphism group. Furthermore, some necessary conditions for the point‐cyclic resolvability of 2‐(υ, k, 1) designs are also given. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 2–14, 2000  相似文献   

15.
Let ∑ = (V,E) be a finite, d‐regular bipartite graph. For any λ > 0 let πλ be the probability measure on the independent sets of ∑ in which the set I is chosen with probability proportional to λ|I|λ is the hard‐core measure with activity λ on ∑). We study the Glauber dynamics, or single‐site update Markov chain, whose stationary distribution is πλ. We show that when λ is large enough (as a function of d and the expansion of subsets of single‐parity of V) then the convergence to stationarity is exponentially slow in |V(∑)|. In particular, if ∑ is the d‐dimensional hypercube {0,1}d we show that for values of λ tending to 0 as d grows, the convergence to stationarity is exponentially slow in the volume of the cube. The proof combines a conductance argument with combinatorial enumeration methods. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

16.
Let K be a graph on r vertices and let G = (V,E) be another graph on ∣V ∣ = n vertices. Denote the set of all copies of K in G by 𝒦. A non‐negative real‐valued function f : 𝒦→ ℝ+ is called a fractional K‐factor if ∑ K:vK∈𝒦f(K) ≤ 1 for every vV and ∑ K∈𝒦f(K) = n/r. For a non‐empty graph K let d(K) = e(K)/v(K) and d(1)(K) = e(K)/(v(K) ‐ 1). We say that K is strictly K1‐balanced if for every proper subgraph KK, d(1)(K) < d(1)(K). We say that K is imbalanced if it has a subgraph K such that d(K) > d(K). Considering a random graph process on n vertices, we show that if K is strictly K1‐balanced, then with probability tending to 1 as n, at the first moment τ0 when every vertex is covered by a copy of K, the graph has a fractional K‐factor. This result is the best possible. As a consequence, if K is K1‐balanced, we derive the threshold probability function for a random graph to have a fractional K‐factor. On the other hand, we show that if K is an imbalanced graph, then for asymptotically almost every graph process there is a gap between τ0 and the appearance of a fractional K‐factor. We also introduce and apply a criteria for perfect fractional matchings in hypergraphs in terms of expansion properties. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

17.
Stochastic geometry models based on a stationary Poisson point process of compact subsets of the Euclidean space are examined. Random measures on ?d, derived from these processes using Hausdorff and projection measures are studied. The central limit theorem is formulated in a way which enables comparison of the various estimators of the intensity of the produced random measures. Approximate confidence intervals for the intensity are constructed. Their use is demonstrated in an example of length intensity estimation for the segment processes. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Let (X, Y) be a pair of random variables such that X = (X1,…, Xd) ranges over a nondegenerate compact d-dimensional interval C and Y is real-valued. Let the conditional distribution of Y given X have mean θ(X) and satisfy an appropriate moment condition. It is assumed that the distribution of X is absolutely continuous and its density is bounded away from zero and infinity on C. Without loss of generality let C be the unit cube. Consider an estimator of θ having the form of a piecewise polynomial of degree kn based on mnd cubes of length 1/mn, where the mnd(dkn+d) coefficients are chosen by the method of least squares based on a random sample of size n from the distribution of (X, Y). Let (kn, mn) be chosen by the FPE procedure. It is shown that the indicated estimator has an asymptotically minimal squared error of prediction if θ is not of the form of piecewise polynomial.  相似文献   

19.
We consider a model of long‐range first‐passage percolation on the d‐dimensional square lattice ?d in which any two distinct vertices x,y ? ?d are connected by an edge having exponentially distributed passage time with mean ‖ x – y ‖α+o(1), where α > 0 is a fixed parameter and ‖·‖ is the l1–norm on ?d. We analyze the asymptotic growth rate of the set ßt, which consists of all x ? ?d such that the first‐passage time between the origin 0 and x is at most t as t → ∞. We show that depending on the values of α there are four growth regimes: (i) instantaneous growth for α < d, (ii) stretched exponential growth for α ? d,2d), (iii) superlinear growth for α ? (2d,2d + 1), and finally (iv) linear growth for α > 2d + 1 like the nearest‐neighbor first‐passage percolation model corresponding to α=∞. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Quasi‐random graphs can be informally described as graphs whose edge distribution closely resembles that of a truly random graph of the same edge density. Recently, Shapira and Yuster proved the following result on quasi‐randomness of graphs. Let k ≥ 2 be a fixed integer, α1,…,αk be positive reals satisfying \begin{align*}\sum_{i} \alpha_i = 1\end{align*} and (α1,…,αk)≠(1/k,…,1/k), and G be a graph on n vertices. If for every partition of the vertices of G into sets V 1,…,V k of size α1n,…,αkn, the number of complete graphs on k vertices which have exactly one vertex in each of these sets is similar to what we would expect in a random graph, then the graph is quasi‐random. However, the method of quasi‐random hypergraphs they used did not provide enough information to resolve the case (1/k,…,1/k) for graphs. In their work, Shapira and Yuster asked whether this case also forces the graph to be quasi‐random. Janson also posed the same question in his study of quasi‐randomness under the framework of graph limits. In this paper, we positively answer their question. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号