首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.  相似文献   

2.
Theoretical and experimental information on the shape and morphology of bare and passivated gold clusters is fundamental to predict and understand their electronic, optical, and other physical and chemical properties. An effective theoretical approach to determine the lowest-energy configuration (global minimum) and the structures of low energy isomers (local minima) of clusters is to combine genetic algorithms and many-body potentials (to perform global structural optimizations), and first-principles density functional theory (to confirm the stability and energy ordering of the local minima). The main trend emerging from structural optimizations of bare Au clusters in the size range of 12-212 atoms indicates that many topologically interesting low-symmetry, disordered structures exist with energy near or below the lowest-energy ordered isomer. For example, chiral structures have been obtained as the lowest-energy isomers of bare Au28 and Au55 clusters, whereas in the size-range of 75-212 atoms, defective Marks decahedral structures are nearly degenerate in energy with the ordered symmetrical isomers. For methylthiol-passivated gold nanoclusters [Au28(SCH3)16 and Au38(SCH3)24], density functional structural relaxations have shown that the ligands are not only playing the role of passivating molecules, but their effect is strong enough to distort the metal cluster structure. In this work, a theoretical approach to characterize and quantify chirality in clusters, based on the Hausdorff chirality measure, is described. After calculating the index of chirality in bare and passivated gold clusters, it is found that the thiol monolayer induces or increases the degree of chirality of the metallic core. We also report simulated high-resolution transmission electron microscopy (HRTEM) images which show that defects in decahedral gold nanoclusters, with size between 1-2 nm, can be detected using currently available experimental HRTEM techniques.  相似文献   

3.
Optimized structures and cohesive energies of small mercury clusters (HgN; N = 3–7, 13, 19) are calculated with the spin-orbit diatomics-in-molecules method. The theory takes into account the effect of s-p mixing which tends to enhance the binding energies in the ground state. It is shown that excimer clusters have significantly short optimum bond lengths and their atomic geometries differ considerably from those in the ground state. Excitation energy gap depends sensitively on both cluster size and nearest-neighbor separation. Numerical results are compared with other theories and experiments.  相似文献   

4.
The photoionization spectra of Pr2-Pr21 and Ce2-Ce17 have been measured near threshold. The ionization potentials (IPs) of and vary discontinuously with size, but trend downward toward the work function of the bulk metals. In general, the IPs of cerium clusters display more variation than those of praseodymium clusters. The sudden discontinuities observed in the IPs of both and is akin to that displayed by clusters of transition metal atoms, suggesting that as in transition metal clusters, the rapid evolution in geometric structure with size is the source of these discontinuities. Received: 2 January 1998 / Accepted: 10 March 1998  相似文献   

5.
The geometrical structure of ground state Ban clusters (n =2-14) has been predicted from various types of calculations including two ab initio approaches used for the smaller sizes namely HF+MP2( n =2-6), DFT (LSDA)( n =2-6, 9) and one model approach HF+pairwise dispersion used for all sizes investigated here. The lowest energy configurations as well as some isomers have been investigated. The sizes n =4, 7 and 13 are predicted to be the relatively more stable ones and they correspond to the three compact structures: the tetrahedron, the pentagonal bipyramid and the icosahedron. The growth behavior from Ba7 to Ba13 appears to be characterized by the addition of atoms around a pentagonal bipyramid leading to the icosahedral structure of Ba13 which is consistent with the observed size-distribution of barium clusters. Values for vertical ionization potentials calculated for n =2-5 at the CI level are seen to be in quite good agreement with recent measures. Received: 14 May 1997 / Received in final form: 2 February 1998 / Accepted: 27 February 1998  相似文献   

6.
A photoionization study of the Me(NH3) clusters formed in the reaction of photoablated third group metal vapor with gaseous ammonia is reported. The photoionization spectra exhibit some features due to vibrational excitation of ionic clusters and to transitions to neutral Rydberg states leading to autoionization. DFT quantum chemical calculations are performed on the Me(NH3). The cluster geometries are fully optimized imposing the C3v symmetry. The calculated values of the IPs are in agreement with those experimentally determined. Received: 16 February 1998 / Revised and Accepted: 7 May 1998  相似文献   

7.
We present the results of absorption measurements in a cesium vapor around 630 K, together with photoionization spectra through a resonance-enhanced two-photon absorption of ultracold cesium dimers created after photoassociation of ultracold cesium atoms. The maximum efficiency of the ultracold molecule ionization is found for wavelengths where absorption at thermal energies is the strongest, in agreement with our theoretical simulations of both processes, involving the so-called Cs2 diffuse bands. This result will be helpful for further optimization of such a direct way of detection of ultracold molecules. Received 13 September 2001  相似文献   

8.
The structures, binding energies, and electronic properties of Cn and NaCn (n=2–12) clusters have been systematically investigated using density functional theory (DFT). A number of previously undiscovered isomers of NaCn clusters are reported, including fan-like, linear and three-dimensional structures. Moreover, NaCn clusters with even n are found to be more stable than those with odd n, in contrast with the case of Cn clusters.  相似文献   

9.
Various dissociation channels of silver bromide cluster ion Ag2Br+ and silver cluster ion Ag3 + were observed in high-energy collisionally-activated dissociation (CAD) using a Cs target. The fragment patterns of the high-energy CAD were compared with those of the metastable dissociation and low-energy CAD. The difference in the fragment patterns between the high-energy CAD and the other dissociation methods was explained in terms of the internal energy distributions. The dissociation mechanisms of neutral silver bromide cluster Ag2Br and silver cluster Ag3 were also investigated by charge inversion mass spectrometry using the Cs target. While the fragment ions AgBr- and Ag2 - were dominantly observed in the charge inversion spectrum of Ag2Br+, the undissociated ion Ag3 - was observed as a predominant peak in the case of Ag3 +. The dissociation behavior of Ag2Br* can be explained on the basis of the calculated thermochemical data. Contrary to this, the predominant existence of the undissociated Ag3 - cannot be explained by the reported thermochemical data. The existence of undissociated Ag3 - suggests that the dissociation barrier is higher than the internal energy of Ag3 * (theoretical: 1.03 eV, experimental: 2.31 eV) estimated from the ionization potentials of Ag3 and Cs.  相似文献   

10.
The electronic and geometric structure of rare gas clusters doped with rare-gas atoms Rg = Xe, Kr or Ar is investigated with fluorescence excitation spectroscopy in the VUV spectral range. Several absorption bands are observed in the region of the first electronic excitations of the impurity atoms, which are related to the lowest spin-orbit split atomic 3P1 and 1P1 states. Due to influence of surrounding atoms of the cluster, the atomic lines are shifted to the blue and broadened (“electronical cage effect”). From the known interaction potentials and the measured spectral shifts the coordination of the impurity atom in ArN, KrN, NeN and HeN could be studied in great detail. In the interior of KrN and ArN the Xe atoms are located in substitutional sites with 12 nearest neighbours and internuclear distances comparable to that of the host matrix. In NeN and HeN the cluster atoms (18 and 22, respectively) arrange themselves around the Xe impurity with a bondlength comparable to that of the heteronuclear dimer. The results confirm that He clusters are liquid while Ne clusters are solid for N≥ 300. Smaller Ne clusters exhibit a liquid like behaviour. When doping is strong, small Rgm-clusters (Rg = Xe, Kr, Ar, m≤10 2) are formed in the interior sites of the host cluster made of Ne or He. Specific electronically excited states, assigned to interface excitons are observed. Their absorption bands appear and shift towards lower energy when the cluster size m increases, according to the Frenkel exciton model. The characteristic bulk excitons appear in the spectra, only when the cluster radius exceeds the penetration depth of the interface exciton, which can be considerably larger than that in free Rgm clusters. This effect is sensitive to electron affinities of the guest and the host cluster.  相似文献   

11.
12.
We have studied the fluorescence of electronically excited OH*, H* and H2O+* dissociation fragments after VUV excitation ( h ν≥11.6 eV) of rare-gas clusters (Rg = Ne, Ar) doped with H2O molecules. In contrast to a free molecule, where Balmer H-series dominate the UV-visible spectra, only the OH * ( A 2 Σ + X 2 Π) emission band is observed in neon clusters. No emission of excited water ions has been observed. We find that while higher excitation energies (Ne vs. Ar) induce higher vibrational excitation of the OH* ( A ) fragment, the rotational temperature is lower. This effect is attributed to the difference in the geometric position of the H2O molecule on the surface or inside the Rg-cluster. The rotational relaxation in neon clusters is rapid while the vibrational relaxation is slow because of the coupling with the low energy matrix phonons. Received 7 March 2002 / Received in final form 27 May 2002 Published online 19 July 2002  相似文献   

13.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

14.
The possibility of using magic Si7 clusters to form a cluster material was studied experimentally and theoretically. In experiments Si7 clusters were deposited on carbon surfaces, and the electronic structure and chemical properties of the deposited clusters were measured using X-ray photoelectron spectroscopy (XPS). A non bulk-like electronic structure of Si7 was found in the Si 2p core level spectra. Si7 is suggested to form a more stable structure than the non-magic Si8 cluster and Si atoms upon deposition on carbon surfaces. Theoretically it was possible to study the interaction between the clusters without the effect of a surface. Density functional theory (DFT) calculations of potential curves of two free Si7 clusters approaching each other in various orientations hint at the formation of cluster materials rather than the fusion of clusters forming bulk-like structures.  相似文献   

15.
Cluster anions of a sodium atom with acrylonitrile molecules, (n = 0–6), have been studied by negative-ion photoelectron spectroscopy. In addition, theoretical calculations by using density functional theory have been performed to obtain optimized structures and vertical detachment energies. For Na(AN), the spectrum can be explained by excitation of two different isomers of the anion. For , a broad band is found in the photoelectron spectrum, whose profile is almost identical with those of previously reported photoelectron spectra of and a negative ion of chemically synthesized 1,3,5-cyclohexanetricarbonitrile (CHTCN) molecule. From this resemblance of band profiles, we conclude that oligomerization of (AN)3 takes place in and the CHTCN is formed as the intracluster reaction product.  相似文献   

16.
We present results on the ultrafast dynamics of mass-selected neutral Ag4 clusters using NeNePo (negative ion - neutral - positive ion) femtosecond pump-probe spectroscopy. One-color pump-probe spectra of the Ag4 -/Ag4/Ag4 + system measured at 385 nm and an internal cluster temperature of 20 K display a complex beat structure over more than 60 ps. The oscillatory structure is attributed to vibrational wave packet dynamics in an excited “dark" state of neutral Ag4. A dominant 740 fs wave packet period as well as wave packet dephasing and rephasing are observed in the spectra. Fourier analysis of the spectra yields a group of frequencies centered around 45 cm-1 and an anharmonicity χ eχ eχ e of 2.65 cm-1 for the active vibrational mode. Received 30 November 2000  相似文献   

17.
Photoinduced dissociation in the ultraviolet region has been investigated for Ag nF n-1 + cluster ions. Photodissociation spectrum of Ag2F+ in the energy of 3.8–5.6 eV exhibits several sharp bands corresponding to the transition to electronically excited states. In this dissociation, only the Ag2 + ion was observed as a fragment ion. Theoretical calculation indicates that the parent Ag2F+ ion has a linear Ag-F-Ag equilibrium geometries in the ground and excited states. Since conformational changes by excitation of bending vibration are necessary for the fragmentation of an F atom, this indicates that production of Ag2 + from Ag2F+ is a result of internal conversion and following conformational changes.  相似文献   

18.
Geometries, electronic states and electron affinities of AlmAsn and AlmAs n (m+n=2–5) clusters have been examined using four hybrid and pure density functional theory (DFT) methods. Structural optimization and frequency analyses are performed using a 6-311+G(2df) one-particle basis set. The geometries are fully optimized with each DFT method independently. The three types of energy separations reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The calculation results show that the singlet structures have higher symmetry than that of doublet structures. The best functional for predicting molecular structures was found to be BLYP, while other functionals generally underestimated bond lengths. The largest adiabatic electron affinity, vertical electron affinity and vertical detachment energy, obtained at the 6-311+G(2df)/BP86 level of theory, are 2.20, 2.04 and 2.27 eV (AlAs), 2.13, 1.94 and 2.38 eV (AlAs2), 2.44, 2.39 and 2.47 eV (Al2As), 2.09, 1.80 and 2.53 eV (Al2As2), 2.01, 1.57 and 2.36 eV (AlAs3), 2.32, 2.11 and 2.55 eV (Al2As3), 2.40, 1.45 and 3.26 eV (AlAs4), 1.94, 1.90 and 2.07 eV (Al4As), respectively. However, the BHLYP method gives the largest values for EAad and EAvert of Al3As and EAad of Al3As2, respectively. For the vibrational frequencies of the AlnAsm series, the B3LYP method produces good predictions with the average error only about 10 cm-1 from available experimental and theoretical values. The other three functionals overestimate or underestimate the vibrational frequencies, with the worst predictions given by the BHLYP method.  相似文献   

19.
Mass-resolved resonant two photon ionisation (R2PI) and infrared ion dip spectra have been recorded for 4-phenylimidazole (4PI) and its singly and multiply hydrated clusters 4PI(H2O)n = 0 - 4, under supersonic expansion conditions. In the case of 4PI(H2O)0,1, it has also been possible to record infrared spectra in both the ground (S0) and excited (S1) states. Combining the experimental data with the results of ab initio calculations has led to the structural assignment of each cluster. In each case, the water molecules bind primarily to the NH site of the imidazole ring. Clusters with n≥ 2 incorporate linear water chains, in which the proton donating terminus bridges either to the π-electron system (n = 2) or to the >N: atom site (n = 3, 4) on the imidazole ring. Despite the creation of a “water wire”, connecting the donor and acceptor sites of imidazole, there is no evidence of proton transfer in either the ground or excited state. Received 20 December 2001 Published online 13 September 2002  相似文献   

20.
Nam(H2O)n Clusters ( n = 1...200, m = 1...50) are formed in a recently build pick-up arrangement. Preformed water clusters traverse a sodium oven, where sodium atoms are picked up. At low sodium vapour pressure ( < 1×10-4 mbar) pure Na(H2O)n clusters are observed in the mass spectra. At high sodium vapour pressure ( > 1×10-3 mbar) the water cluster pick up more than 50 Na atoms and reaction products Na(NaOH)n ( n = 2, 4...50) dominate the mass spectra. The even number of NaOH units in the products indicate that also in a finite cluster the reaction occurs in pairs as in the macroscopic reaction. Received 4 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号