首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of transonic flow nonuniformity on the profiling of optimal plug nozzles is studied in the inviscid gas approximation. Sonic and supersonic regions providing maximum thrust for given nozzle dimensions and a given outer pressure are designed for given subsonic contours and calculated nonuniform transonic flows. As in the case of uniform flow on a cylindrical sonic surface, the initial regions of the designed contours satisfy the condition that in these regions the flow Mach number is unity or near-unity. In all the examples calculated, the optimal plug nozzles produce a greater thrust than the optimal axisymmetric and annular nozzles with a near-axial flow for the same lengths and the same gas flow rates through the nozzle. It is established that contouring without regard for transonic flow nonuniformity can result in considerable thrust losses. However, these losses are due only to a decrease in the flow rate, while the specific thrust may even increase slightly.  相似文献   

2.
A numerical model of the turbulent boundary layers in the gas dynamic channel of a supersonic MHD generator is constructed. This model describes the development and structure of the layers in the nozzle, on the electrode and insulating walls of the duct, in the two-dimensional approximation. The characteristics of the boundary layers in various generator operating regimes are investigated numerically. The integral boundary layer thicknesses characterizing the nonuniformity of the gas dynamic and electrodynamic quantities are calculated. The limits of applicability of the integral calculation method are determined for typical MHD generator operating conditions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 35–41, May–June, 1990.The authors wish to thank A. B. Vatazhin, V. A. Bityurin, and V. A. Zhelnin for discussing the formulation of the problem, A. A. Yakushev for participating in the discussion of the results, and Yu. V. Rakseeva and L. V. Yashina for preparing the article.  相似文献   

3.
In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found. The project supported by the Russian Foundation for Basic Research (project No. 96-01-00313) and the National Natural Science Foundation of China (joint RFBR-NSFC grant No. 96-01-00017c)  相似文献   

4.
Planar laser-induced fluorescence visualisation is used to investigate nonuniformities in the flow of a hypersonic conical nozzle. Possible causes for the nonuniformity are outlined and investigated, and the problem is shown to be due to a small step at the nozzle throat. Entrainment of cold boundary layer gas is postulated as the cause of the signal nonuniformity. PACS 47.80.Jk, 47.40.Ki, 47.60.+i  相似文献   

5.
Theoretical and experimental studies made in recent years show that the plasma flow in the duct of a real MHD generator differs significantly from the quasi-uniform model of the flow in an idealized MHD duct. This difference appears primarily in the analysis of the electrodynamics of the MHD generator. Usually the actual electrical characteristics of the generator are poorer than expected, which may be caused, in particular, by flow nonuniformities and electrical leaks in the duct. The influence of these factors shows up particularly strongly in the presence of the Hall effect.Some qualitative and quantitative estimates of these phenomena have already been made in the literature. The necessity for taking into account the influence of the cold boundary layer on the effective conductance of the plasma in the duct was shown in [1]; in [2] it was shown that this influence increases markedly in the presence of the Hall effect. The influence of shunting of the plasma by the electrically conductive walls of the duct was considered in [3–5].The present paper describes an analysis of the combined influence of the effects associated with flow nonuniformities and electrical leaks for the case of anisotropy of the plasma conductivity, and an example is presented of the calculation of flow in a MHD generator with finite variation of the parameters.  相似文献   

6.
The behaviour of two-phase high velocity flows in variable cross section ducts was investigated using a one-dimensional numerical model developed for the study of the annular flow configuration. Heat, mass, and momentum transfer between the phases during the flow were considered. The validation of the calculation procedure was made with some experimental data for the air-water couple, while the main application concerned the evaluation of momentum transfer from an expanding gas to an entrained liquid stream in droplet form. A liquid metal-gas flow was considered to simulate the process taking place in a plant where electrical power is generated by a liquid metal flowing in a magnetic field (MHD). The effectiveness of energy and momentum transfer between the liquid and the gas phase during the expansion was evaluated and the influence of nozzles with different convergence angles was investigated.  相似文献   

7.
A useful means of constructing approximate flow models is the hydraulic (for two-dimensional problems quasi-one-dimensional) approach, based on averaging the initial nonuniform flows over some direction or cross section [1]. In this case, at the expense of a rougher model it is possible to reduce the dimensionality of the problem. Here, this approach is extended to unsteady two-dimensional gas-dynamic processes; certain problems (flow around a cone or a blunt body, jet flows) are considered in the framework of the quasi-one-dimensional model obtained, and results are compared with the solutions of the corresponding two-dimensional problems.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 136–143, March–April, 1989.  相似文献   

8.
A solution is given to the plane problem of the flow of a conducting gas across a homogeneous magnetic field in a magnetogasdynamic channel taking account of the Hall effect at small magnetic Reynolds numbers. The channel is formed by two long electrodes, and the cross section of the channel varies slightly and periodically along the gas flow. It is assumed that the electromagnetic forces are small. It is shown that the current distribution in the channel is nonuniform to a consider able degree and that inverse currents can form at the electrodes, with both subsonic and supersonic flows of the conducting gas. Transverse motion of the gas, due to a change in the cross section of the channel, leads to an increase of Joule energy losses. In [1] the current distribution was obtained in a flat channel formed by infinite dielectric walls, with the flow of a steady-state stream of plasma through the channel across a homogeneous magnetic field. With interaction between the flow and the magnetic field, closed current loops develop in the channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 26–33, November–December, 1970.  相似文献   

9.
A calculation is made of the turbulent zone of mixing of two flows of viscous and heat conducting gas in a Laval nozzle. For such a nozzle of given geometry, a comparison is made of calculations of the integrated characteristics of flows that are nonuniform with respect to the total parameters in the framework of various models: laminar hydraulics, viscous laminar hydraulics, and total mixing without hydraulic losses. The calculations are made for a stationary, nonswlrling flow of a viscous heat conducting gas with nearly discontinuous step distribution of the total parameters at the entrance to an axisymmetric Laval nozzle of given geometry. In this situation, the gas flows with different total parameters at the entrance to the nozzle are separated by a surface near which the profiles of the flow parameters are specified on the basis of boundary-layer theory. In the blocked regime investigated here, the flow in the part where the nozzle becomes narrower and at least at the beginning of the expanding part does not depend on the pressure of the surrounding medium. The integrated characteristics of the nozzle (gas flow rate G, impulse I, specific impulse i = I/G, etc.) depend on the parameter distributions at the entrance to the nozzle, and also on the turbulent mixing of the flows in the mixing zone. To analyze the dependence of the integrated characteristics on the turbulent mixing, the values of these characteristics calculated in the framework of the three models are compared. The model of mixing without hydraulic losses presupposes complete equalization of the parameters of the original inhomogeneous flow in the constant-area chamber in front of the nozzle with conservation of the mass, energy, and momentum fluxes. The model of laminar hydraulics is described in detail in [1, 2]. The model of viscous laminar hydraulics will be described in Sec. 1.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 114–119, July–August, 1979.I thank A. N. Kraiko for supervising the work, A. N. Sekundov for helpful discussions, and I. P. Smirnova and A. B. Lebedev for making available the computer program.  相似文献   

10.
The influence of flow nonuniformity on the aerodynamic characteristics of profiles in a cascade has been studied in [1, 2, 3]. In these studies the general problem was separated into two independent problems: first, uniform flow of a fluid about a cascade of oscillating profiles disturbed only by the cascade and second, flow of a nonuniform stream past a cascade of stationary profiles. This separation is possible within the framework of linear theory, in which the nonuniformity of the flow approaching the cascade and the profile vibration amplitudes are sufficiently small. However, the order of smallness of these two factors is different, which often leads to consideration of the influence of flow nonuniformity on the unsteady aerodynamic characteristics of the oscillating profiles. This investigation concerns that problem. In particular, certain conditions of flow nonuniformity, giving rise to parametric resonance of turbomachinery blades, are discussed.  相似文献   

11.
半球谐振子密度分布不均匀对输出精度的影响   总被引:1,自引:0,他引:1  
为了研究半球谐振子环向密度分布不均匀对输出精度的影响,首先推导了位置激励表达式,利用解微分方程的布勃诺夫-加廖尔金法建立了谐振子环向密度分布不均匀的动力学方程,然后根据动力学方程并利用平均值法推导了含有密度四次谐波误差的短时间内的漂移模型,最后根据Runge-Kutta法对系统长时间漂移进行了仿真计算,通过计算可知当密度四次谐波幅值为0.0001 kg/m3时,角位置1h内的漂移达到0.03°,因此在加工工艺过程中密度四次谐波应小于此值或采用其他方式加以补偿.  相似文献   

12.
A numerical model for the calculation of gas dynamic systems with turbulent mixing of supersonic jets is proposed. The problem of designing a transitional flow-equalization channel of minimum length is solved for the viscous turbulent mixing of two parallel or mutually inclined supersonic flows. The problem is solved in two stages. In the first stage the flow-equalization channel is designed by solving the inverse problem in the ideal gas approximation. In the second stage the basic problem is solved for the channel thus obtained on the basis of the parabolized Navier-Stokes equations. Investigations have demonstrated the validity of this approach to the equalization of nonuniform flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 175–178, July–August, 1987.The authors are grateful to V. I. Kopchenov for supplying the program for solving the basic problem by a first-order Godunov method and to A. I. Kraiko and Yu. V. Kurochkin for their interest and advice.  相似文献   

13.
There have been many studies of the stress distribution in nonuniform laminated media in general and, in particular, the stress distribution in multilayered slabs with nonuniform layers. The interest in this subject stems in part from its practical importance and in part from the need to account for material nonuniformity and solve problems in three-dimensional formulations. The cases that have been most thoroughly studied are those in which the layers are regarded as orthotropic media working together without slip or separation [1, 5–7, etc.]. The problems are complicated considerably and must be solved numerically when allowance is made for nonrigid contact between the layers of nonuniform anisotropic media.S. P. Timoshenko Instiute of Mechanics, Ukrainian Academy of Sciences, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 2, pp. 17–22, February, 1994.  相似文献   

14.
The fundamental problems of the theory of filtration in media with random nonuniformities were formulated in [1] and methods of solution were indicated. Primary attention was devoted to the steadystate filtration processes. In the following we solve one of the most important unsteady problems and indicate the connection of the result obtained with the widely used methods of determining strata parameters from the curves of the pressure variation in nonflowing wells. We note that the interpretation of the results of such measurements is usually carried out with the aid of the solution of the corresponding problem for a homogeneous stratum or for a stratum whose nonuniformity has a regular nature (for example, [2]), which definitely limits the possibilities of the method. At the same time it is obvious that the solution of these problems for irregular media and particularly the determination of their effective characteristics requires the use of statistical methods of computation.It is also not difficult to see that the results obtained below may be used for the solution of the corresponding problems of heat conduction, diffusion, etc.  相似文献   

15.
The motion of a hypersonic body is accompanied by an increase in the gas temperature in the boundary layer up to tens of thousands of degrees, which causes the gas to ionize. Under these conditions there are problems in calculating coefficients of viscosity, diffusion, and heat conduction. Investigations have shown that it is invalid to extrapolate the widely used approximations for transport coefficients in the high temperature region [1–3]. This paper considers the laminar boundary layer in the vicinity of the stagnation point of a blunt body in a stream of monatomic nonequilibrium ionized gas. The main thrust is a more accurate calculation of transport coefficients and an investigation of their effect on profiles of the gasdynamic parameters. A specific calculation is performed for argon by way of example.  相似文献   

16.
The one-dimensional flows of an inviscid plasma not in thermal equilibrium and with a variable degree of ionization are investigated in the absence of currents. A criterion showing when the ordinary equations of gasdynamics may be used to describe these flows is given. An expression is found for the velocity of sound in such a plasma. Under certain conditions it passes into Newton's formula for isothermal sound. The condition fulfilled in the critical cross section of the channel is found. It is established that the flow of a weakly ionized plasma occurs at constant electron temperature. A detailed investigation is made of the possible types of flow in a cylindrical channel.A criterion is given which shows when the model of a plasma in thermal equilibrium may be applied, and also relationships which permit complete calculation of the flow of such a plasma in a channel of variable cross section.Generally speaking, the flow of a plasma with no currents present differs from the flow of a nonionized gas. This difference is related to the processes of ionization and recombination taking place in the plasma. The electrons usually play the main part in these processes, and so the average energies (temperatures) of electrons and heavy particles (atoms and ions) may differ. If the inelastic collision frequency in the plasma is small compared with the elastic collision frequency, then the temperature difference between the electron component and the heavy component of the plasma may be considerable. The simplest cases of one-dimensional plasma flows are considered with account for ionization and recombination processes and in the absence of thermal equilibrium among the components.The author is grateful to M. N, Kogan for discussing the paper.  相似文献   

17.
Gasdynamic analogies are constructed for the oblique interaction of MHD shock waves (counter colliding or overtaking). These analogies fairly adequately describe the complex dependences of the gas dynamic parameters of the medium on the magnetic field strength and inclination. The complete gas dynamic analogy in which the MHD interaction is simulated by the interaction of two gas dynamic shock waves with Mach numbers calculated on the basis of the fast magnetosonic speeds adequately describe the state of the medium for weak and moderate magnetic fields. The hybrid model, in which the state behind the interacting shock wave is calculated from the MHD relations on discontinuities and the gas dynamic analogy is then used, gives satisfactory results in a stronger field.  相似文献   

18.
Hall效应对三维磁流体发生器的影响   总被引:3,自引:0,他引:3  
应用三维非理想低磁雷诺数磁流体五方程模型发展了对带有强制项的Navier-Stokes方程组采用熵条件格式, 对椭圆型电势方程采用SOR进行迭代的数值方法,研究了Hall效应对磁流体旁路超燃冲压发动机中磁流体发生器流动及性能的影响.磁流体发生器采用电子束获得有效可靠的电导率. 计算结果表明,Hall效应可引起流场和电场的扭曲, 从而诱导出不稳定二次流的发展与演变,并破坏Joule热的分布. 对这些磁流体现象作出了较详细的分析.最后计算了磁流体发生器的性能参数, 说明Hall效应将导致磁流体发生器的性能下降.   相似文献   

19.
The possibility of generating electric power in a plane model of an integral high-speed hydrogen-burning jet engine by mounting a magnetogasdynamic (MHD) generator at the combustion chamber exit is discussed. Attention is concentrated on clarifying the effect of MHD energy extraction from the stream on the aircraft’s thrust characteristics. The internal and external flows are simulated numerically. The two-dimensional supersonic gasdynamic flow inside the engine (in the air-intake, combustion chamber, MHD generator, and nozzle) and the supersonic flow past the aircraft are described on the basis of the complete averaged system of Navier-Stokes equations (in the presence of turbulence), which includes MHD force and heat sources, a one-parameter turbulence model, the electrodynamic equations for an ideal segmented MHD generator, and the equations of the detailed chemical kinetics of hydrogen burning in air. The numerical solution is obtained by means of a computer program that uses a relaxation scheme and an implicit higher-order version of the Godunov method. It is shown that MHD electric power generation can be realized without disturbing the positive balance in the relation between the thrust and the drag of the aircraft with the engine operating with allowance for the MHD drag, but with some loss of effective thrust.  相似文献   

20.
A two-dimensional computational model is proposed to calculate radiative-convective heat transfer in gas flows with large gradients of physical properties. The model is based on the numerical solution of the unsteady dynamic equations for a compressible inviscid gas and the radiative transfer equations. Flow calculations for the magnetogasdynamic channel of a rail accelerator show that the dynamics of the process is substantially affected by the flow in the discharge region and hydrodynamic instability, resulting in the nonstationarity and nonuniformity of the flow and discharge structure. During the process, the discharge can exist both in the form of several current-carrying channels and in the form of a unified plasma formation. Results of the numerical calculations agree qualitative with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 5–13, November–December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号