首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We develop a hybrid unsteady-flow simulation technique combining direct numerical simulation (DNS) and particle tracking velocimetry (PTV) and demonstrate its capabilities by investigating flows past an airfoil. We rectify instantaneous PTV velocity fields in a least-squares sense so that they satisfy the equation of continuity, and feed them to the DNS by equating the computational time step with the frame rate of the time-resolved PTV system. As a result, we can reconstruct unsteady velocity fields that satisfy the governing equations based on experimental data, with the resolution comparable to numerical simulation. In addition, unsteady pressure distribution can be solved simultaneously. In this study, particle velocities are acquired on a laser-light sheet in a water tunnel, and unsteady flow fields are reconstructed with the hybrid algorithm solving the incompressible Navier–Stokes equations in two dimensions. By performing the hybrid simulation, we investigate nominally two-dimensional flows past the NACA0012 airfoil at low Reynolds numbers. In part 1, we introduce the algorithm of the proposed technique and discuss the characteristics of hybrid velocity fields. In particular, we focus on a vortex shedding phenomenon under a deep stall condition (α = 15°) at Reynolds numbers of Re = 1000 and 1300, and compare the hybrid velocity fields with those computed with two-dimensional DNS. In part 2, the extension to higher Reynolds numbers is considered. The accuracy of the hybrid simulation is evaluated by comparing with independent experimental results at various angles of attack and Reynolds numbers up to Re = 104. The capabilities of the hybrid simulation are also compared with two-dimensional unsteady Reynolds-Averaged Navier–Stokes (URANS) solutions in part 2. In the first part of these twin papers, we demonstrate that the hybrid velocity field approaches the PTV velocity field over time. We find that intensive alternate vortex shedding past the airfoil, which is predicted by the two-dimensional DNS, is substantially suppressed in the hybrid simulation and the resultant flow field is similar to the PTV velocity field, which is projection of the three-dimensional velocity field on the streamwise plane. We attempt to identify the motion that originates three-dimensional flow patterns by highlighting the deviation of the PTV velocity field from the two-dimensional governing equations at each snapshot. The results indicate that the intensive spots of the deviation appear in the regions in which three-dimensional instabilities are induced in the shear layer separated from the pressure side.  相似文献   

2.
基于当地流活塞理论的气动弹性计算方法研究   总被引:8,自引:1,他引:8  
张伟伟  叶正寅 《力学学报》2005,37(5):632-639
发展了一种高效、高精度的超音速、高超音速非定常气动力计算 方法------基于定常CFD技术的当地流活塞理论. 运用当地流活塞理论计算非定常 气动力,耦合结构运动方程,实现超音速、高超音速气动弹性的时域模拟. 运用这 种方法计算了一系列非定常气动力算例和颤振算例,并和原始活塞理论、非定 常Euler方程结果作了比较. 由于局部地使用活塞理论假设,这种方法大大地克服 了原始活塞理论对飞行马赫数、翼型厚度和飞行迎角的 限制. 与非定常Euler方程方法相比,当地流活塞理论的效率很高.  相似文献   

3.
Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.  相似文献   

4.
Aerodynamic noise due to interaction between incoming turbulence and rotating blades is an important component in the wind turbine noise. The rod-airfoil configuration is used to investigate the interactive phenomenon experimentally and numerically. Distribution of unsteady pressure on the airfoil surface is measured for different rod positions and airfoil attack angles. Two National Advisory Committee for Aeronatics (NACA) airfoils, NACA0012 and NACA0018, and two wind turbine airfoils, S809 and S825 are investigated. In addition, for low angles of attack, the flow field around the airfoil's leading edge is investigated with the particle image velocimetry (PIV). The experimental results indicate that unsteady pressure disturbances on the airfoil surface are related to the rod vortex shedding. Meanwhile, the interaction flow field of the rod and NACA0012 airfoil is simulated with the unsteady Reynolds averaged Navier-Stokes method (URANS), and the obtained pressure spectra are compared with the experimental results.  相似文献   

5.
A computational study of the development of two- dimensional unsteady viscous incompressible flow around a circular cylinder and elliptic cylinders is undertaken at a Reynolds number of 10,000. A higher- order upwind scheme is used to solve the Navier–Stokes equations by the finite difference method in order to study the onset of computed asymmetry around bluff bodies. For the computed cases the ellipses develop asymmetry much earlier than the circular cylinder. The receptivity of the computed flows in the presence of discrete roughness and surface vibration is studied. Finally, the role of discrete roughness in triggering asymmetry for flow past a circular cylinder is studied and compared with flow visualization experiments at Re=10,000  相似文献   

6.
7.
An experimental system that generates and visualizes unsteady motions in air was employed to visualize vortex developments over bluff bodies in impulsive started flow. The study presents photographic sequences of impulsive flow over circular and square cylinders for flow Reynolds number of 200. A comparison of physical and numerical visualization for impulsive flow over a flat plate at 50° angle of attack and for flow Reynolds number of 1,000 is also presented. The visualization examples reveal the details of vortex separation and subsequent developments and may be utilized as a reference to guide and economize computer visualization efforts on unsteady separated flows.Assistant Professor of Aerospace Engineering  相似文献   

8.
Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder at moderate Reynolds numbers. The vortex structure of the flow separation was studied. The temporal variation of separation angle and length of wake vortex were given. The photographs and experimental results provided basis for further investigation of the complicated feature of the starting process of unsteady separated flows around an elliptic cylinder. The project supported by the National Natural Science Foundation of China.  相似文献   

9.
In the present paper unsteady Navier-Stokes equations have been solved numerically by finite-difference technique in staggered grid distribution for a flow through a channel with locally symmetric and asymmetric constrictions. A coordinate stretching has been made to map the infinite irregular geometry into a finite regular computational domain. Pressure and pressure-velocity corrections scheme have been developed. Convergence criteria (in terms of continuity equation) has been achieved after few time iterations. The critical Reynolds number for asymmetric flow through a symmetric constriction has been found. Critical values depend on the area reduction and the length of the constriction. The increment of Reynolds number grows the asymmetry of the flow. The root mean square (r.m.s.) centreline vertical velocity for asymmetric flow through a symmetric constriction has been drawn at different Reynolds numbers. For flow through symmetric constriction the centreline vertical velocity shows finite oscillation behind the constriction at high Reynolds number.  相似文献   

10.
Membrane wings are used both in nature and small aircraft as lifting surfaces. Separated flows are common at low Reynolds numbers and are the main sources of unsteadiness. Yet, the unsteady aspects of the fluid–structure interactions of membrane airfoils are largely unknown. An experimental study of unsteady aerodynamics of two-dimensional membrane airfoils at low Reynolds numbers has been conducted. Measurements of membrane shape with a high-speed camera were complemented with the simultaneous measurements of unsteady velocity field with a high frame-rate particle image velocimetry system and flow visualization. Vibrations of the membrane and mode shapes were investigated as a function of angle of attack and free stream velocity. While the mean membrane shape is not very sensitive to angle of attack, the amplitude and mode of the vibrations of the membrane depend on the relative location and the magnitude of the unsteadiness of the separated shear layer. The results indicate strong coupling of unsteady flow with the membrane oscillations. There is evidence of coupling of membrane oscillations with the vortex shedding in the wake, in particular, for the post-stall incidences. Comparison of rigid (but cambered) and flexible membrane airfoils shows that the flexibility might delay the stall. Hence this is a potential passive flow control method using flexibility in nature and engineering applications.  相似文献   

11.
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.  相似文献   

12.
The interference of supersonic flows on the concave surface of conical wings was experimentally investigated in [1] for various values of the camber and angles of attack. In order to establish the detailed structure of the interference flow the laminar flow past a wing model in the form of half the surface of a circular cone with vertex angle 2k = 34° was numerically modeled within the framework of the quasiconical approximation for the three-dimensional Navier-Stokes equations [2]. Under this assumption, confirmed by analysis of the experimental data [1], it was found that the displacement of the external inviscid flow as a result of intense flow separation beyond the leading edges leads to flow patterns similar to those realized on V wing's with a break in the transverse contour [3]. At nonzero angles of attack weak secondary separation was detected beneath the flattened regions of primary separation located in the shaded parts of the concave surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 130–136, July–August, 1989.  相似文献   

13.
An error indicator and a locally implicit scheme with anisotropic dissipation model on dynamic quadri‐ lateral–triangular mesh are developed to study transonic flows over vibrating blades with interblade phase angles. In the Cartesian co‐ordinate system, the unsteady Euler equations with moving domain effects are solved. The error indicator, in which unified magnitudes of dynamic grid speed, substantial derivative of pressure, and substantial derivative of vorticity magnitude are incorporated to capture the unsteady wave behaviours and vortex‐shedding phenomena due to unsteadiness. To assess the accuracy of the locally implicit scheme with anisotropic dissipation model on quadrilateral–triangular mesh, two flow calculations are performed. Based on the comparison with the related numerical and experimental data, the accuracy of the present approach is confirmed. According to the high‐resolutional result on the adaptive mesh, the unsteady pressure wave, shock and vortex‐shedding behaviours are clearly demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Flow past sharp-nosed circular cones is investigated for a broad range of freestream Mach numbers M>1 and cone half-angles c at angles of attack from zero to the value at which conical flow breaks down. Several new results are obtained with regard to the position of the Ferri point, the shape of the local supersonic zones and internal shock wave, and the nonmonotonicity of the windward shock slope as a function of the angle of attack. The existence of flow regimes in which the radial velocity on the windward side is directed toward the apex of the cone is demonstrated. The investigation is carried out numerically with relaxation of the solution in a fictitious time coordinate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 6, pp. 79–84, November–December, 1973.  相似文献   

15.
A numerical investigation of the flow past a circular cylinder centred in a two-dimensional channel of varying width is presented. For low Reynolds numbers, the flow is steady. For higher Reynolds numbers, vortices begin to shed periodically from the cylinder. In general, the Strouhal frequency of the shedding vortices increases with blockage ratio. In addition, a two-dimensional instability of the periodic vortex shedding is found, both empirically and by means of a Floquet stability analysis. The instability leads to a beating behaviour in the lift and drag coefficients of the cylinder, which occurs at a Reynolds number higher than the critical Reynolds number for the three-dimensional mode A-type instability, but lower than a Reynolds number for any mode B-type instability.  相似文献   

16.
An unsteady two-dimensional numerical simulation is performed to investigate the forced convection heat transfer for flow past a long heated equilateral triangular cylinder in an unconfined medium for the low Reynolds number laminar regime. The Reynolds number considered in this study ranges from 50 to 250 with three different values of Prandtl number (Pr?=?0.71, 7 and 100). Fictitious confining boundaries are chosen on the lateral sides of the computational domain that makes the blockage ratio β?=?5?% in order to make the problem computationally feasible. An unstructured triangular mesh is used for the computational domain discretization and the simulation is carried out with the commercial CFD solver Fluent. The flow and heat transfer characteristics are analyzed with the streamline and isotherm patterns at various Reynolds numbers. The dimensionless frequency of vortex shedding (Strouhal number), drag coefficient and Nusselt numbers are presented and discussed. The results obtained are in good agreement with the available results in the literature.  相似文献   

17.
An inviscid theoretical method that is applicable to non-periodic motions and that accounts for large amplitudes and non-planar wakes (large-angle unsteady thin airfoil theory) is developed. A pitch-up, hold, pitch-down motion for a flat plate at Reynolds number 10,000 is studied using this theoretical method and also using computational (immersed boundary method) and experimental (water tunnel) methods. Results from theory are compared against those from computation and experiment which are also compared with each other. The variation of circulatory and apparent-mass loads as a function of pivot location for this motion is examined. The flow phenomena leading up to leading-edge vortex shedding and the limit of validity of the inviscid theory in the face of vortex-dominated flows are investigated. Also, the effect of pitch amplitude on leading-edge vortex shedding is examined, and two distinctly different vortex-dominated flows are studied using dye flow visualizations from experiment and vorticity plots from computation.  相似文献   

18.
Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders.  相似文献   

19.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

20.
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar?Cturbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier?CStokes code based on the space?Ctime conservation element, solution element (CESE) method is used to perform time-accurate Navier?CStokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号