首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The radiation of a semiconductor laser has been modulated in frequency by variable strain. The strain is excited by injecting bulk or surface ultrasonic waves. Dynamic and static analyses of the variations in the spectral characteristics of the radiation in the presence of sound are performed. A model is suggested and the data obtained are analyzed theoretically. The radiation frequency modulation in InGaAsP/InP heterostructures produced by surface waves is shown to be determined mainly by the band gap modulation of the active region.  相似文献   

2.
Robert S  Conoir JM  Franklin H 《Ultrasonics》2006,45(1-4):178-187
The layer-multiple-scattering method is developed to study wave propagation through two-dimensional lattices of cylindrical inclusions in an elastic medium. The lattices are a series of periodically spaced infinite one-dimensional periodic gratings (or rows) of inclusions. The layer-multiple-scattering method allows the analysis of the reflection and transmission properties of the two-dimensional lattice, provided those of each row are known. These are later determined by means of an exact multiple scattering formalism based on modal series developments. A new characteristic equation is obtained that describes the Bloch wave propagation into the infinite lattice. Lattices with empty and fluid-filled inclusions are compared. The comparison shows the existence of pass and stop bands due to the resonances of the fluid-filled inclusions. Resonant inclusions allow the opening of narrow pass bands inside phononic stop band, which is an interesting phenomenon for demultiplexing problems. It is worth noting that inclusion resonances have nothing to do with resonances due to defects, as they involve the whole lattice. In addition, it is shown that stop bands, at an oblique incidence, due to a strong coupling between longitudinal and transverse waves, are related to dispersive guided waves that propagate in the direction of the reticular planes of the lattices.  相似文献   

3.
The optical properties of one-dimensional photonic crystals based on porous anodic aluminum oxide films have been studied by measuring transmittance and specular reflectance spectra in the visible and UV spectral regions. Angular dependences of the spectral positions of optical stop bands are obtained. It is shown that the reflectance within the first stop band varies from point to point on the sample surface, reaching a level of 98–99% at some points. The dispersion relation for electromagnetic waves in the model of infinite periodic structure is calculated for the samples under study. The possibility of using models with an infinite or finite number of layers to calculate reflectance spectra near the first optical stop band is discussed.  相似文献   

4.
An algorithm for controlling the stop bands for elastic Bloch-Floquet waves within a periodic structure is proposed. Explicit asymptotic estimates of frequencies of translational and rotational standing waves, together with the numerical estimates of the stop band frequencies, are given. Thermal pre-stress is introduced and used to control the position of the stop bands on the dispersion diagram.  相似文献   

5.
An algorithm for controlling the stop bands for elastic Bloch–Floquet waves within a periodic structure is proposed. Explicit asymptotic estimates of frequencies of translational and rotational standing waves, together with the numerical estimates of the stop band frequencies, are given. Thermal pre-stress is introduced and used to control the position of the stop bands on the dispersion diagram.  相似文献   

6.
Experimental measurements of acoustic transmission through a solid-solid two-dimensional binary-composite medium constituted of a triangular array of parallel circular steel cylinders in an epoxy matrix are reported. Attention is restricted to propagation of elastic waves perpendicular to the cylinders. Measured transmitted spectra demonstrate the existence of absolute stop bands, i.e., band gaps independent of the direction of propagation in the plane perpendicular to the cylinders. Theoretical calculations of the band structure and transmission spectra using the plane wave expansion and the finite difference time domain methods support unambiguously the absolute nature of the observed band gaps.  相似文献   

7.
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide are considered in the framework of the full system of Maxwell’s electrodynamic equations. We investigate Bloch–Floquet waves under homogeneous or alternating boundary conditions for the elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped modes as well as some anomalous features due to piezoelectricity are identified. For mixed boundary conditions, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone. The dispersion equation has been investigated also for phonon–polariton band gaps. It is shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell but at optical frequencies polariton resonance occurs at wavelengths comparable with the period of the waveguide.  相似文献   

8.
Phase modulation methods for surface electromagnetic waves propagating at the interface between a homogeneous medium and a one-dimensional photonic crystal have been analyzed numerically and theoretically. Modulation is performed by changing the geometrical parameters of the microrelief on the surface of the photonic crystal. The phase modulation methods under consideration can be used to create optical elements for surface waves, in particular, lenses, prisms, and diffraction gratings. A Bragg grating has been calculated as an example. According to the simulation results, the average coefficient of reflection of a surface wave in the band gap is 0.95.  相似文献   

9.
Broadband surface phonon wave packets on a phononic crystal made up of a microstructured line pattern are tracked in two dimensions and in real time with an ultrafast optical technique. The eigenmode distribution and the 2D acoustic band structure are obtained from spatiotemporal Fourier transforms of the data up to 1 GHz. We find stop bands at the zone boundaries for both leaky-longitudinal and Rayleigh waves, and show how the structure of individual acoustic eigenmodes in k space depends on Bloch harmonics and on mode coupling.  相似文献   

10.
The influence of the pore shapes on the band structures in phononic crystals with periodic distributed void pores are investigated in this paper. By using finite difference time domain (FDTD) scheme, the dispersion properties of the in-plane x-y mode waves in the materials with triangular, circular or square pores are discussed respectively. The influence of the pore shapes and the porosity on the band gap structures is analyzed. The results show that for x-y mode waves, the stop bands are easily formed in the materials with triangular pores, but hard for square ones. Moreover, a critical porosity exists for the formation of the absolute band gaps. Along with the increase of the porosity, the width of the absolute band gap is increased, but the centre frequency is dropped.  相似文献   

11.
Periodically layered isolators exhibit transmissibility “stop bands” or frequency ranges in which there is very low transmissibility. A two-dimensional axisymmetric model was developed to accurately predict the location of these stop bands for isolators in compression. A Ritz approximation method was used to model the axisymmetric elastic behavior of layered cylindrical isolators. A modal analysis was performed for a single elastomer and metal layer combination or cell. A modal synthesis approach was then used to obtain a model of an n-celled isolator, from which overall isolator modal properties are determined. This model of the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental transmissibilities are compared for test specimens having identical elastomer components, but different geometries and different numbers of cells. In all cases, experimental and analytical transmissibilities are in close agreement at frequencies ranging from zero to those associated with the initial roll-off of the stop bands. For three and four cell cases, minimum stop band analytical transmissibilities lie below the minimum experimental measurements, although an experimental noise floor imposed a minimum transmissibility measurement of approximately 1.4×10−4. Experiment suggests a practical isolator design could limit the minimum number of cells to three or four to ensure a pronounced stop band attenuation effect. In addition, analytical and experimental transmissibilities are compared for geometrically similar test specimens with differing elastomeric damping properties. The analytical and experimental results show that stop band effectiveness is not appreciably affected by the addition of modest damping.  相似文献   

12.
We study the characteristics of microstrip ring exhibiting photonic band gap properties. Since the stop band is caused by the reflection of electromagnetic waves at the narrow gap introduced in the ring, the geometry of the ring can influence on the characteristics of stop band. The center frequency of the stop band is determined mainly by the outer ring radius when the line width of the circular ring is rather narrow. But it is determined mainly by the mean ring radius when the ring is not a circular form or the line width of circular ring is wide. The frequency range of the stop band can be varied by a reactive component mounted on the gap. The presence of capacitor (inductor) on the gap decreases (increases) the center frequency and the frequency range of the stop band. Moreover, the stop band can be widened by modifying the geometry of ring. These properties can be useful in the applications to the compact microwave circuits, tunable filters and microwave switches.  相似文献   

13.
We present results for a compact, multiple gap and multiple pass band microstrip resonator filter. The microstrip resonator filter, consisting of a sandwich substrate with a metallic fractal pattern, shows multiple gaps from 40 MHz to 10 GHz. The transmission characteristics of the microstrip resonator filter show multiple pass bands and stop bands for electromagnetic waves over the microwave frequency range. Experimental observations are in good agreement with the results of finite difference time domain (FDTD) simulations. These properties can be useful in the application in compact microwave circuits, microwave filters, and microwave switches. PACS 84.30.Vn; 84.40.Az; 95.85.Bh  相似文献   

14.
刘钧  张玺斌  高明 《应用光学》2016,37(3):456-464
为了同时探测中波红外和长波红外两个波段信息,实现两个不同视场快速切换,采用空间多镜头图像拼接全景成像法,设计了四通道制冷型中/长红外双波段双视场全景成像光学系统。该全景系统由周视方向3个互成120的红外物镜和顶视方向一个红外物镜构成,每一个成像通道光学系统采用二次成像结构。F数为2,工作波段为中波3.5 m~4.8 m、长波7.8 m~9.8 m,双视场两档焦距之比为5,通过轴向移动变倍组可以完成122/44.49双视场转换。利用折/衍混合器件及非球面设计技术,采用光学被动式消热差法对光学系统进行了温度补偿。设计结果表明,该双视场光学系统具有100%冷光阑效率和良好的冷反射抑制能力。在-40℃~+60℃范围内,在奈奎斯特频率18 lp/mm位置处,中波红外系统MTF值均大于0.5,长波红外系统MTF值均大于0.3。  相似文献   

15.
Propagation of spin waves (SWs) through a periodic multilayered magnetic structure is analyzed. It is assumed that the structure consists of ferromagnetic layers having the same thickness but different magnetizations. The wave spectrum obtained contains forbidden zones (stop bands) in which wave propagation is prohibited. Introduction into the structure of the ferromagnetic layer with a different thickness breaks the structural symmetry and leads to a localization of the SW mode with the frequency lying in the stop band. Reflection of the wave by the structure of the finite length and transmission of the wave through the structure are also investigated. Numerical calculations of the wave dispersion and the transmission coefficients for symmetrical periodic structures as well as the structures with a defect are presented. Drawing an analogy from photonic crystals known in optics, such magnetic structures can be called one-dimensional (1-D) magnonic crystals (MCs). The possibilities of existence of the 2-D MCs are also discussed.  相似文献   

16.
We analyze the stability of acoustic waves in a medium moving with a time-variable velocity. An instability criterion for these waves is obtained and analyzed for the weak modulation of medium velocity. The harmonics that emerge during the propagation under parametric resonance are shown to have an additional frequency shift.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 9, pp. 1087–1090, September, 1996.This work was supported by the Russian Foundation for Fundamental Research under Projects 95-02-05001 (G. I. Grigor'ev and V. V. Tamoikin) and 96-05-64277 (O. N. Savina).  相似文献   

17.
The influence of the tuning of the radiation frequency of quantum-well heterolasers within the limits of their amplification band on the output laser radiation parameters at different frequencies of pump-current modulation has been numerically simulated using two optical models of an active medium under the assumption that the excess of the invariable component of the pump current over its threshold value at any point of the amplification band is constant. It has been established that the amplitude-detuning characteristics of the lasers studied are linear at high current-modulation frequencies and nonlinear at medium ones. The behavior of the nonlinear spectral response of a laser diode is explained by its multiresonance structure and is mainly determined by the ratio between the pump-current modulation frequency and the maximum resonance frequency of the laser. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 4, pp. 473–478, July–August, 2005.  相似文献   

18.
Electromagnetic localization and the existence of gap solitons in nonlinear metamaterials, which exhibit a stop band in their linear spectral response, is theoretically investigated. For a self-focusing Kerr nonlinearity, the equation for the electric field envelope with carrier frequency in the stop band—where the magnetic permeability µ(?) is positive and the dielectric permittivity ε(?) is negative—is described by a nonlinear Klein-Gordon equation with a dispersive nonlinear term. A family of standing and moving localized waves for both electric and magnetic fields is found, and the role played by the nonlinear dispersive term on solitary wave stability is discussed.  相似文献   

19.
We have used numerical modeling to establish the major features of the variation (sweeping) of the “ instantaneous” laser frequency of heterojunction quantum lasers as a function of the pump current modulation frequency and tuning of the lasing frequency within the gain band. The active medium is described within a two-band model with identical distribution of levels for the electron and hole subbands, assuming transitions with no selection rule between the ground-state subbands. Sweeping of the laser frequency occurs due to variation of the refractive index of the active medium, as a result of the variation in the concentration of nonequilibrium charge carriers. Laser frequency sweeping does not occur for low current modulation frequencies, corresponding to realization of the quasisteady-state lasing regime. In the other limiting case of relatively high current modulation frequencies, the modulation depth of the laser output also tends toward zero. The magnitude of the sweep is greatest in the intermediate current modulation frequency region. For a specified current modulation frequency, the dynamic shift of the laser mode depends on the position of the lasing frequency within the gain band. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 223–229, March–April, 2007.  相似文献   

20.
Comodulation masking release for a 700-Hz pure-tone signal was investigated as a function of the number and spectral positions of 20-Hz-wide comodulated flanking bands. In the first experiment, all stimuli were presented diotically. CMR was examined as a function of the number of flanking bands present, in conditions where the bands were arranged symmetrically around the signal frequency, were below the signal frequency, or were above the signal frequency. The number of flanking bands ranged from one to eight, and the magnitude of the diotic CMR ranged from approximately 5-16 dB. The results indicated: (1) bands closer to the signal resulted in larger masking release, and (2) more bands gave rise to larger CMR (but with diminishing returns above two flanking bands). Two additional sets of diotic conditions were examined and compared to the condition where all eight comodulated flanking bands were present: In one set of conditions, two of the eight flanking bands were removed; in the other set of conditions, two of the eight flanking bands were replaced with bands (termed "deviant" bands) that were not comodulated with respect to the other bands. There was very little effect of reducing eight bands to six, even when the removed bands were relatively near the signal frequency; however, CMR was substantially reduced when deviant bands were introduced, particularly when the deviant bands were placed relatively near the signal frequency. These reductions in CMR were slightly greater when each of the deviant bands had a unique modulation pattern (bideviant bands) than when the two deviant bands themselves shared the same modulation pattern (codeviant bands). In the second experiment, dichotic conditions were examined where the number and spectral positions of the flanking bands in the nonsignal ear were varied (the signal ear received only a 20-Hz-wide noise band centered on the signal frequency). The magnitude of the dichotic CMR ranged from approximately 2-10 dB, depending on condition. Effects of proximity and the number of flanking bands were similar to the effects obtained in diotic conditions. For both the diotic and the dichotic data, the effects of proximity were more consistent with an interpretation based upon across-channel processing than upon a within-channel interaction. The results obtained using deviant bands indicate that it is difficult for the auditory system to disregard the modulation pattern of flanking bands that differ from the modulation pattern of the on-signal band, particularly if such bands are proximal to the signal frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号