首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which – in accordance with the results from the temporal simulation – indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.  相似文献   

2.
Three-dimensional large-eddy simulations (LES) of the convective boundary layer over a domain of approximately 6 km are performed with the UCLA LES model. Simulations are forced with a constant surface heat flux and prescribed subsidence, and are run to equilibrium. Sub-grid scale fluxes are parameterised with the Smagorinsky–Lilly scheme. A range of grid spacings from 40 down to 5 m are employed. Kinetic energy spectra and the various terms in the kinetic energy spectral budget – heat flux, nonlinear transfer, pressure, and dissipation – are computed using two-dimensional discrete Fourier transforms at every vertical level. Despite the fact that isotropic grid spacings of down to 5 m (grid sizes of 11522×400) were used, an inertial range with a ?5/3 spectrum is not obtained. Rather, shallower energy spectral slopes that are closer to ?4/3 are found. The shallower spectra are shown to possibly result from the injection of kinetic energy over a wide range of scales via a very broad heat flux spectrum. Only with the highest resolution (Δx = 5 m) does the total heat flux begin to converge and the possibility of local isotropy emerge at small scales. Dependence on surface heat flux and domain size is considered. Preliminary sub-grid scale sensitivity results are obtained through comparison with the turbulent kinetic energy sub-grid scale model.  相似文献   

3.
4.
The diagnostic scaling concept, introduced for the streamwise turbulence intensity in wall-bounded turbulent flows (Alfredsson, Segalini and Örlü, Phys. Fluids 2011;23:041702), is here extended and generalised not only for the higher even-order central statistical moments, but also for the odd moments and thereby the probability density distribution of the streamwise velocity fluctuations. Turbulent boundary layer data up to a friction Reynolds number of 60,000 are employed and demonstrate the feasibility of the diagnostic scaling for the data throughout the logarithmic and wake regions. A comparison with the generalised logarithmic law for even-order moments by Meneveau and Marusic (J. Fluid Mech. 2013;719:R1) based on the attached-eddy hypothesis, is reported. The diagnostic plot provides an apparent Reynolds-number-independent scaling of the data, and is exploited to reveal the functional dependencies of the constants needed in the attached-eddy-based model. In particular, the invariance of the lowest order diagnostic scaling poses an intriguing incompatibility with the asymptotic constancy of the Townsend–Perry constant.  相似文献   

5.
The nonlinear evolution process of new vortex structures at the late-stage of the transition, including the 3-D spatial structure of barrel-shaped vortex and dark spots structure observed by experiment research, has been confirmed by our computational results. The formation mechanisms of these structures have been explored. It is revealed that the new vortex structures, the ring-like vortex chain and induced disturbance velocities play a dominant role in the generation of turbulent spots.  相似文献   

6.
The output from a direct numerical simulation (DNS) of turbulent channel flow at Reτ ≈ 1000 is used to construct a publicly and Web services accessible, spatio-temporal database for this flow. The simulated channel has a size of 8πh × 2h × 3πh, where h is the channel half-height. Data are stored at 2048 × 512 × 1536 spatial grid points for a total of 4000 time samples every 5 time steps of the DNS. These cover an entire channel flow-through time, i.e. the time it takes to traverse the entire channel length 8πh at the mean velocity of the bulk flow. Users can access the database through an interface that is based on the Web services model and perform numerical experiments on the slightly over 100 terabytes (TB) DNS data on their remote platforms, such as laptops or local desktops. Additional technical details about the pressure calculation, database interpolation, and differentiation tools are provided in several appendices. As a sample application of the channel flow database, we use it to conduct an a-priori test of a recently introduced integral wall model for large eddy simulation of wall-bounded turbulent flow. The results are compared with those of the equilibrium wall model, showing the strengths of the integral wall model as compared to the equilibrium model.  相似文献   

7.
陈林  唐登斌  Chaoqun Liu 《物理学报》2011,60(9):94702-094702
基于边界层转捩后阶段的高精度直接数值模拟结果,发现流向条纹结构的低速条纹的演化过程中存在不连续现象,以及随高速条纹的发展会出现称之为"高速斑"的新特性. 通过详细剖析边界层转捩过程中的复杂涡系结构以及上喷下扫流动现象,证实流向高低速条纹新特性与流场涡系结构的演化过程紧密相关. 关键词: 流向条纹 边界层 转捩 直接数值模拟  相似文献   

8.
The inflow conditions for spatial direct numerical simulation (SDNS) of turbulent boundary layers should reflect the characteristics of upstream turbulence, which is a puzzle. In this paper a new method is suggested, in which the flow field obtained by using temporal direct numerical simulation (TDNS) for fully developed turbulent flow (only flow field for a single moment is sufficient) can be used as the inflow of SDNS with a proper transformation. The calculation results confirm that this method is feasible and effective. It is also found that, under a proper time-space transformation, all statistics of the fully developed turbulence obtained by both temporal mode and spatial mode DNS are in excellent agreement with each other, not only qualitatively, but also quantitatively. The normal-wise distributions of mean flow profile, turbulent Mach number and the root mean square (RMS) of the fluctuations of various variables, as well as the Reynolds stresses of the fully developed turbulence obtained by using SDNS, bear similarity in nature. Supported by the National Natural Science Foundation of China (Grant No. 90205021), the China Postdoctoral Science Foundation (Grant No. 20060400707), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200328), and partially supported by Liu-Hui Center of Applied Mathematics, Nankai University and Tianjin University  相似文献   

9.
10.
The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions.It is found that large enstrophy production is associated with high dissipation and high enstrophy,while large enstrophy destruction with moderate ones.The enstrophy production and destruction are also correlated with the dissipation production and destruction.Moreover,the enstrophy producing region has a distinct tendency to be‘sheet-like’structures and the enstrophy destroying region tends to be‘tube-like’in the inner layer.Correspondingly,the tendency to be‘sheet-like’or‘tube-like’structures is no longer obvious in the outer layer.Further,the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies.It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer,and the enstrophy production(destruction)mainly on the alignment between the vorticity vector and the extensive(compressive)eigenvector in the outer layer.  相似文献   

11.
A new high-resolution code for the direct simulation of incompressible boundary layers over a flat plate is described. It can accommodate a wide range of pressure gradients, and general time-dependent boundary conditions such as incoming wakes or wall forcing. The consistency orders of the advective and pressure-correction steps are different, but it is shown that the overall resolution is controlled by the higher-order advection step. The formulation of boundary conditions to ensure global mass conservation in the presence of arbitrary forcing is carefully analyzed. Two validation boundary layers with and without a strong adverse pressure gradient are presented, with maximum Reynolds numbers Reθ≈2000Reθ2000. They agree well with the available experiments. Turbulent inflow conditions for the zero-pressure case are implemented by a recycling method, and it is shown that at least the initial 300 momentum thicknesses have to be discarded before the effect of the artificial inflow is forgotten. It is argued that this is not a defect of the method used to generate the inflow, but a property of the boundary layer.  相似文献   

12.
Direct numerical simulations of turbulent channel flows are performed with opposition control at Reτ = 180 and 1000. The drag reduction rate at the higher Reynolds number is reduced by 25% compared with that at the lower Reynolds number. In order to investigate the reason for the degradation of the control effectiveness, we examine the response of Reynolds stresses and coherent structures in both the outer and inner regions to the control and the role that large-scale motions play therein. In the outer region, the Reynolds stresses at different length scales are reduced at the same rate as the drag reduction rate, and conditionally averaged large-scale motions with spanwise scale larger than half channel width are still large-scale low-speed streaks flanked by a pair of large-scale counter-rotating streamwise vortices but with reduced velocity amplitudes. In the inner region, the effectiveness of the control in suppressing the turbulence deteriorates at the higher Reynolds number. In response to the superimposition effect of large-scale motions, the contribution to near-wall wall-parallel velocity fluctuations from large-scale motions becomes larger at the higher Reynolds number, while the suppression of large-scale motions by the control is weaker than that of near-wall coherent structures. In both controlled and uncontrolled cases, large-scale motions can modulate the amplitudes of near-wall coherent structures, and the attenuation of streamwise vortices by the control under large-scale high-speed streaks is significantly less effective than that under large-scale low-speed streaks. As a result, the effectiveness of control in suppressing near-wall coherent structures and Reynolds shear stresses becomes weaker at the higher Reynolds number. The quantitative analysis of the contributions to the drag reduction rate from outer and inner regions shows that the effectiveness of the control is mainly determined by the suppression degree of near-wall motions. Furthermore, budgets of streamwise enstrophy are analysed to reveal the interaction of large-scale motions with near-wall streamwise vorticity. The titling effect induced by large-scale motions is positive under large-scale high-speed streaks, but negative under large-scale low-speed streaks, which could be a possible way of large-scale motion to modulate streamwise vorticity. In the controlled cases, the positive titling effect induced by large-scale motions under large-scale high-speed streaks is even enhanced, while other terms in the budgets are reduced, which could explain the degradation of control effectiveness in suppressing near-wall streamwise vortices under large-scale high-speed streaks. Therefore, the loss in the drag reduction rate at the higher Reynolds number is due to the weakened control effectiveness on near-wall coherent structures, which are exposed to the modulation effect of large-scale motions.  相似文献   

13.
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling–recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.  相似文献   

14.
The evolution of 2-D disturbances in hypersonic boundary layer with Mach number 6,8, and 10 was investigated numerically by three different numerical schemes. At the entrance, second mode T-S waves with different amplitudes were introduced, and the relation between the Mach number and the amplitude of the disturbance when shocklets started to appear was investigated. By comparing the disturbance velocity profiles with those provided by linear stability theory, the effects of shocklets on flow structures were also investigated.  相似文献   

15.
We investigate the heat-release effects on the characteristics of the subgrid-scale (SGS) stress tensor and SGS dissipation of kinetic energy and enstrophy. Direct numerical simulation data of a non-premixed reacting turbulent wall-jet flow with and without substantial heat release is employed for the analysis. This study comprises, among others, an analysis of the eigenvalues of the resolved strain rate and SGS stress tensors, to identify the heat-release effects on their topology. An assessment of the alignment between the eigenvectors corresponding to the largest eigenvalues of these two tensors is also given to provide further information for modelling of the SGS stress tensor. To find out the heat-release effects on the dynamics of the turbulent kinetic energy and enstrophy dissipation, probability density functions (PDFs) and mean values are analysed. The mean SGS shear stress and turbulent kinetic energy both slightly increase in the buffer layer and substantially decrease further away from the wall, due to the heat-release effects. Contrary to the kinetic energy, heat release decreases the mean SGS dissipation of enstrophy in the near-wall region. Moreover, differences in the shapes of the PDFs between the isothermal and exothermic cases indicate changes in the intermittency level of both SGS dissipations. Heat release also increases the SGS stress anisotropy in the near-wall region. Although, the structure of the mean resolved strain-rate tensor only marginally differs between the isothermal and exothermic cases in the near-wall region, substantial differences are observed in the jet area, where compressibility effects are important and heat-release effects are found to promote compression states. The differences in the relative alignment between the SGS stress and resolved strain-rate tensors in the isothermal and exothermic cases are discussed in connection with the differences in the SGS dissipation of kinetic energy.  相似文献   

16.
We extend an earlier method for solving kinetic boundary layer problems to the case of particles moving in aspatially inhomogeneous background. The method is developed for a gas mixture containing a supersaturated vapor and a light carrier gas from which a small droplet condenses. The release of heat of condensation causes a temperature difference between droplet and gas in the quasistationary state; the kinetic equation describing the vapor is the stationary Klein-Kramers equation for Brownian particles diffusing in a temperature gradient. By means of an expansion in Burnett functions, this equation is transformed into a set of coupled algebrodifferential equations. By numerical integration we construct fundamental solutions of this equation that are subsequently combined linearly to fulfill appropriate mesoscopic boundary conditions for particles leaving the droplet surface. In view of the intrinsic numerical instability of the system of equations, a novel procedure is developed to remove the admixture of fast growing solutions to the solutions of interest. The procedure is tested for a few model problems and then applied to a slightly simplified condensation problem with parameters corresponding to the condensation of mercury in a background of neon. The effects of thermal gradients and thermodiffusion on the growth rate of the droplet are small (of the order of 1%), but well outside of the margin of error of the method.  相似文献   

17.
In this paper, a class of finite difference schemes which achieves low dispersion and controllable dissipation in smooth region and robust shock-capturing capabilities in the vicinity of discontinuities is presented. Firstly, a sufficient condition for semi-discrete finite difference schemes to have independent dispersion and dissipation is derived. This condition enables a novel approach to separately optimize the dissipation and dispersion properties of finite difference schemes and a class of schemes with minimized dispersion and controllable dissipation is thus obtained. Secondly, for the purpose of shock-capturing, one of these schemes is used as the linear part of the WENO scheme with symmetrical stencils to constructed an improved WENO scheme. At last, the improved WENO scheme is blended with its linear counterpart to form a new hybrid scheme for practical applications. The proposed scheme is accurate, flexible and robust. The accuracy and resolution of the proposed scheme are tested by the solutions of several benchmark test cases. The performance of this scheme is further demonstrated by its application in the direct numerical simulation of compressible turbulent channel flow between isothermal walls.  相似文献   

18.
Jets and plumes are shear flows created by momentum and buoyant sources. They can be classified as either pure jets, forced plumes, pure plumes, or lazy plumes. Lazy plumes are characterised as having a high source buoyancy flux relative to the momentum flux. We use direct numerical simulations to simulate lazy plumes to ascertain the effects of increasing plume ‘laziness’ on the higher order moments, such as Reynolds stresses, third order moments and turbulent kinetic energy budgets. The mildly lazy plumes behaved like most plumes in terms of higher order statistics: a self-similar collapse some distance downstream and peak values comparable to previous experiments and simulations. The highly lazy plumes did not show a self-similar collapse and, in most cases, had higher peak values in all moments. The highly lazy plumes had higher levels of turbulence intensities due to the high buoyancy flux, leading to significant buoyancy-induced turbulence production downstream.  相似文献   

19.
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.  相似文献   

20.
A series of large-eddy simulations of spatially developing turbulent boundary layers with uniform blowing at moderate Reynolds numbers (based on free-stream velocity, U, and momentum thickness, θ) up to Reθ ≈ 2500 were performed with the special focus on the effect of intermittent (separated in streamwise direction) blowing sections. The number of blowing sections, N, investigated is set to be 3, 6, 20, 30 and compared to N = 1, which constitutes the reference case, while the total wall-mass flux is constrained to be the same for all considered cases, corresponding to a blowing amplitude of 0.1% of U for the reference case. Results indicate that the reference case provides a net-energy saving rate of around 18%, which initially decreases at most 2% points for N = 3 but recovers with increasing N, where the initial reduction of the drag reduction is found to be related to the shorter streamwise length of the intermittent blowing sections. The physical decomposition of the skin friction drag through the Fukagata-Iwamoto-Kasagi (FIK) identity shows that the distribution of all components over each blowing section has similar trends, resulting in similar averaged values over the whole control region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号