首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments.  相似文献   

2.
3.
The unsteady turbulent channel flow subject to the temporal acceleration is considered in this study. Large-eddy simulations were performed to study the response of the turbulent flow to the temporal acceleration. The simulations were started with the fully developed turbulent channel flow at an initial Reynolds number of Re0 = 3500 (based on the channel half-height and the bulk-mean velocity), and then a constant temporal acceleration was applied. During the acceleration, the Reynolds number of the channel flow increased linearly from the initial Reynolds number to the final Reynolds number of Re1 = 22,600. The effect of grid resolution, domain size, time step size on the simulation results was assessed in a preliminary study using simulations of the accelerating turbulent flow as well as simulations of the steady turbulent channel flow at various Reynolds numbers. Simulation parameters were carefully chosen from the preliminary study to ascertain the accuracy of the simulation. From the accelerating turbulent flow simulations, the delays in the response of various flow properties to the temporal acceleration were measured. The distinctive features of the delays responsible for turbulence production, energy redistribution, and radial propagation were identified. Detailed turbulence statistics including the wall shear stress response during the acceleration were examined. The results reveal the changes in the near-wall structures during the acceleration. A self-sustaining mechanism of turbulence is proposed to explain the response of the turbulent flow to the temporal acceleration. Although the overall flow characteristics are similar between the channel and pipe flows, some differences were observed between the two flows.  相似文献   

4.
Direct numerical simulations (DNS) of an anisothermal reacting turbulent channel flow with and without radiative source terms have been performed to study the influence of the radiative heat transfer on the optically non-homogeneous boundary layer structure. A methodology for the study of the emitting/absorbing turbulent boundary layer (TBL) is presented. Details on the coupling strategy and the parallelization techniques are exposed. An analysis of the first order statistics is then carried out. It is shown that, in the studied configuration, the global structure of the thermal boundary layer is not significantly modified by radiation. However, the radiative transfer mechanism is not negligible and contributes to the heat losses at the walls. The classical law-of-the-wall for temperature can thus be improved for RANS/LES simulations taking into account the radiative contribution.  相似文献   

5.
This Letter presents a wavelet technique for extracting coherent vortices from three-dimensional turbulent flows, which is applied to a homogeneous isotropic turbulent flow at resolution N = 256(3). The coherent flow is reconstructed from only 3%N wavelet coefficients that retain the vortex tubes, and 98.9% of the energy with the same k(-5/3) spectrum as the total flow. In contrast, the remaining 97%N wavelet coefficients correspond to the incoherent flow which is structureless, decorrelated, and whose effect can therefore be modeled statistically.  相似文献   

6.
Turbulence models often involve Reynolds averaging, with a closure providing the Reynolds stress tensor as function of mean velocity gradients, through a turbulence constitutive equation. The main limitation of this linear closure is that it rests on an analogy with kinetic theory. For this analogy to be valid there has to be a scale separation between the mean velocity variations and the turbulent Lagrangian free path whose mean value is the turbulent mixing length. The aim of this work is to better understand this hypothesis from a microscopic point of view. Therefore, fluid elements are tracked in a turbulent channel flow. The flow is resolved by direct numerical simulation (DNS). Statistics on particle trajectories ending on a certain distance y0 from the wall are computed, leading to estimations of the turbulent mixing length scale and the Knudsen number. Comparing the computed values to the Knudsen number in the case of scale separation, we may know in which region of the flow and to what extent the turbulence constitutive equation is not verified. Finally, a new non-local formulation for predicting the Reynolds stress is proposed.  相似文献   

7.
The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions.It is found that large enstrophy production is associated with high dissipation and high enstrophy,while large enstrophy destruction with moderate ones.The enstrophy production and destruction are also correlated with the dissipation production and destruction.Moreover,the enstrophy producing region has a distinct tendency to be‘sheet-like’structures and the enstrophy destroying region tends to be‘tube-like’in the inner layer.Correspondingly,the tendency to be‘sheet-like’or‘tube-like’structures is no longer obvious in the outer layer.Further,the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies.It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer,and the enstrophy production(destruction)mainly on the alignment between the vorticity vector and the extensive(compressive)eigenvector in the outer layer.  相似文献   

8.
Using high-resolution direct numerical simulations, the height and Reynolds number dependence of high-order statistics of the energy dissipation rate and local enstrophy are examined in incompressible, fully developed turbulent channel flow. The statistics are studied over a range of wall distances, spanning the viscous sublayer to the channel flow centerline, for friction Reynolds numbers Reτ=180 and Reτ=381. The high resolution of the simulations allows dissipation and enstrophy moments up to fourth order to be calculated. These moments show a dependence on wall distance, and Reynolds number effects are observed at the edge of the logarithmic layer. Conditional analyses based on locations of intense rotation are also carried out in order to determine the contribution of vortical structures to the dissipation and enstrophy moments. Our analysis shows that, for the simulation at the larger Reynolds number, small-scale fluctuations of both dissipation and enstrophy show relatively small variations for z+?100.  相似文献   

9.
Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ =1094 has been obtained. Commonly used detection meth- ods in experiments are applied to detecting coherent structures in the flow field, and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is de- tected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively. Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.  相似文献   

10.
林建忠  李俊  张卫峰 《中国物理》2005,14(12):2529-2538
The orientation and concentration distributions of fibres in laminar andturbulent channel flows are investigated numerically. The obtained resultsare in good agreement with the experimental data. In the laminar flowregime, more fibres orient to the flow direction as the Reynolds numberincreases. The shear rate of fluid around a fibre plays an important role indetermining the orientation distribution of fibres, while the fibre densityand the fibre aspect-ratio have marginal influence on the orientationdistribution. In the turbulent regime, the orientation distribution offibres becomes more homogeneous with the increase of Reynolds number, andthe concentration profile is flatter than that in the laminar regime. Thefluctuating intensity of fibre velocity in the downstream direction islarger than that in the lateral directions.  相似文献   

11.
A bird-feather-inspired herringbone riblet texture was investigated for turbulent drag reduction. The texture consists of blade riblets in a converging/diverging or herringbone pattern with spanwise wavelength Λf. The aim is to quantify the drag change for this texture as compared to a smooth wall and to study the underlying mechanisms. To that purpose, direct numerical simulations of turbulent flow in a channel with height Lz were performed. The Fukagata-Iwamoto-Kasagi identity for drag decomposition was extended to textured walls and was used to study the drag change mechanisms. For Λf/Lz ? O(10), the herringbone texture behaves similarly to a conventional parallel-riblet texture in yaw: the suppression of turbulent advective transport results in a slight drag reduction of 2%. For Λf/Lz ? O(1), the drag increases strongly with a maximum of 73%. This is attributed to enhanced mean and turbulent advection, which results from the strong secondary flow that forms over regions of riblet convergence/divergence. Hence, the employment of convergent/divergent riblets in the texture seems to be detrimental to turbulent drag reduction.  相似文献   

12.
Based on the theoretical model for a single coherent structure in the wall region of a turbulent boundary layer, we studied the interaction of two coherent structures by direct numerical simulation in order to explain the mechanism for the formation of low-speed streaks.  相似文献   

13.
14.
DNS of compressible turbulent boundary layer over a blunt wedge   总被引:1,自引:0,他引:1  
Wall turbulence is more complicated than free turbulence, and the direct numerical simulation (DNS) of wall turbulence is more difficult. In recent years, most of DNS cases for wall turbulence are simplified by using temporal mode, where streamwise pe- riodic boundary condition is imposed. In temporal mode, spatial transition will be con- sidered as an analogue of time-evolving transition. For the channel turbulence, an equivalent body force can substitute for the mean gradient of pressure, …  相似文献   

15.
We introduce a new concept of boundary conditions for realization of the lattice Boltzmann simulations of turbulent flows. The key innovation is the use of a universal distribution function for particles, analogous to the Tamm–Mott-Smith solution for the shock wave in the classical Boltzmann kinetic equation. Turbulent channel flow simulations demonstrate that the new boundary enables accurate results even with severely under-resolved grids. Generalization to complex boundary is illustrated with an example of turbulent flow past a circular cylinder.  相似文献   

16.
The initial model of turbulent spots with the wall disturbance using the pulse form was proposed. A group of three-dimensional coupling compact difference schemes with high accuracy and high resolution were developed, and implemented to simulate the formation and development of turbulent spots in the near-wall shear flow by means of direct numerical simulation of the Navier-Stokes equations. Growing and decaying modes were used to analyze nonlinear evolution characteristics of the turbulent spots.  相似文献   

17.
At the late stage of transitional boundary layers, the nonlinear evolution of the ring-like vortices and spike structures and their effects on the surrounding flow were studied by means of direct numerical simulation with high order accuracy. A spatial transition of the flat-plate boundary layers in the compressible flow was conducted. Detailed numerical results with high resolution clearly represented the typical vortex structures, such as ring-like vortices and so on, and induced ejection and sweep events...  相似文献   

18.
The inflow conditions for spatial direct numerical simulation (SDNS) of turbulent boundary layers should reflect the characteristics of upstream turbulence, which is a puzzle. In this paper a new method is suggested, in which the flow field obtained by using temporal direct numerical simulation (TDNS) for fully developed turbulent flow (only flow field for a single moment is sufficient) can be used as the inflow of SDNS with a proper transformation. The calculation results confirm that this method is feasible and effective. It is also found that, under a proper time-space transformation, all statistics of the fully developed turbulence obtained by both temporal mode and spatial mode DNS are in excellent agreement with each other, not only qualitatively, but also quantitatively. The normal-wise distributions of mean flow profile, turbulent Mach number and the root mean square (RMS) of the fluctuations of various variables, as well as the Reynolds stresses of the fully developed turbulence obtained by using SDNS, bear similarity in nature. Supported by the National Natural Science Foundation of China (Grant No. 90205021), the China Postdoctoral Science Foundation (Grant No. 20060400707), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200328), and partially supported by Liu-Hui Center of Applied Mathematics, Nankai University and Tianjin University  相似文献   

19.
Direct numerical simulations (DNS) are ideally suited to investigate in detail turbulent reacting flows in simple geometries. For an increasing number of applications, detailed models must be employed to describe the chemical processes with sufficient accuracy. Despite the huge cost of such simulations, recent progress has allowed the direct numerical simulation of turbulent premixed flames while employing complete reaction schemes. We briefly describe our own developments in this field and use the resulting DNS code to investigate more extensively the structure of premixed methane flames expanding in a three-dimensional turbulent velocity field, initially homogeneous and isotropic. This situation typifies, for example, the initial flame development after spark ignition in a gas turbine or an internal combustion engine. First investigation steps have been carried out at low turbulence levels on this same configuration in the past Symposium, and we build on top of these former results. Here, a considerably higher Reynolds number is considered, the simulation has been repeated twice in to limit the possibility of spurious, very specific results, and several complementary post-processing steps are carried out. Characteristic features concerning the observed combustion regime are presented. We then investigate in a quantitative manner the evolution of flame surface area, global stretch-rate, flame front curvature, flame thickness, and correlation between thickness and curvature. The possibility of obtaining reliable information on flame front curvature from two-dimensional slices is checked by comparison with the exact procedure.  相似文献   

20.
The problem of scattering of airborne sound by a dynamically rough surface of a turbulent, open channel flow is poorly understood. In this work, a laser-induced fluorescence (LIF) technique is used to capture accurately a representative number of the instantaneous elevations of the dynamically rough surface of 6 turbulent, subcritical flows in a rectangular flume with Reynolds numbers of 10,800?Re?47,30010,800?Re?47,300 and Froude numbers of 0.36?Fr?0.690.36?Fr?0.69. The surface elevation data were then used in a finite difference time domain (FDTD) model to predict the directivity pattern of the airborne sound pressure scattered by the dynamically rough flow surface. The predictions obtained with the FDTD model were compared against the sound pressure data measured in the flume and against that obtained with the Kirchhoff approximation. It is shown that the FDTD model agrees with the measured data within 22.3%. The agreement between the FDTD model and stationary phase approximation based on Kirchhoff integral is within 3%. The novelty of this work is in the direct use of the LIF data and FDTD model to predict the directivity pattern of the airborne sound pressure scattered by the flow surface. This work is aimed to inform the design of acoustic instrumentation for non-invasive measurements of hydraulic processes in rivers and in partially filled pipes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号