共查询到12条相似文献,搜索用时 15 毫秒
1.
We analyze the impact of discretization errors on the performance of the Smagorinsky model in large eddy simulations (LES). To avoid difficulties related to solid boundaries, we focus on decaying homogeneous turbulence. It is shown that two numerical implementations of the model in the same finite volume code lead to significantly different results in terms of kinetic energy decay, time evolutions of the viscous dissipation and kinetic energy spectra. In comparison with spectral LES results, excellent predictions are however obtained with a novel formulation of the model derived from the discrete Navier–Stokes equations. We also highlight the effect of discretization errors on the measurement of physical quantities that involve scales close to the grid resolution. 相似文献
2.
M. Parsani G. Ghorbaniasl C. Lacor E. Turkel 《Journal of computational physics》2010,229(14):5373-5393
The filtered fluid dynamic equations are discretized in space by a high-order spectral difference (SD) method coupled with large eddy simulation (LES) approach. The subgrid-scale stress tensor is modelled by the wall-adapting local eddy-viscosity model (WALE). We solve the unsteady equations by advancing in time using a second-order backward difference formulae (BDF2) scheme. The nonlinear algebraic system arising from the time discretization is solved with the nonlinear lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm. In order to study the sensitivity of the method, first, the implicit solver is used to compute the two-dimensional (2D) laminar flow around a NACA0012 airfoil at Re = 5 × 105 with zero angle of attack. Afterwards, the accuracy and the reliability of the solver are tested by solving the 2D “turbulent” flow around a square cylinder at Re = 104 and Re = 2.2 × 104. The results show a good agreement with the experimental data and the reference solutions. 相似文献
3.
Filippo Maria Denaro 《Journal of Turbulence》2018,19(9):754-797
The development of the dynamic procedure as well as the deeper understanding of the link between filtering, modelling and numerics, allowed Large Eddy Simulation (LES) to make great progresses during the last years. Among several modelling approaches, the scale-similar-based modelling is based on the observation that the smallest resolved scales are the most active in the interaction with the unresolved ones. Owing to the low dissipation introduced by the scale-similar models (SSMs), the coupling with the eddy-viscosity model is often used in the so-called mixed models. Dynamic version of mixed models is historically based on the application of the test-filtering on the differential form of the filtered momentum equation. Such an approach is used for both the one and the two-coefficients mixed models. The use of the differential form of the filtered equations produces the well-known mathematical inconsistence caused by the need to extract arbitrarily the model functions out of filtering. It is known that, along with the eddy viscosity assumption, the magnitude of the Germano identity error (GIE) is strongly influenced. The mathematical inconsistence in the extraction of the dynamic eddy viscosity coefficient was recently superseded by using the new integral-based formulation. However, owing to the intrinsic limits of the Smagorinsky model, also in those results, the GIE is still remarkable therefore, the present paper presents a new formulation to the integral-based dynamic procedure for both one and two-coefficients mixed models (IDMM). The original contributions of the present paper can be summarised: (1) A theoretical analysis comparing the spectral errors for the differential and integral-based SSM, assessing that the errors are less relevant for the integral form; (2) The implementation of one and two parameters IDMM for the simulation of turbulence in a plane channel flow, assessing the reduction of the GIE and the good behaviour of the statistics that are compared with those of the other LES codes used in the LESinItaly project. 相似文献
4.
LIU Nansheng LU Xiyun & ZHUANG Lixian Department of Mechanics Mechanical Engineering University of Science Technology of China Hefei China 《中国科学G辑(英文版)》2004,47(4):463-476
Rotating turbulence occurs extensively in nature and engineering circumstances. Meanwhile, understanding physical mechanisms of the rotating turbulence is important to the fundamental research of turbulence. The turbulent flow in rotating frames undergoes two kinds of Coriolis force effects. First, a secondary flow is induced in the case that there is a mean vorticity component perpendicular to the rotating axis. Second, there are augmenting or suppressing effects on the turbulence if there i… 相似文献
5.
Accurate prediction of non-premixed turbulent combustion using large eddy simulation (LES) requires detailed modelling of the mixing between fuel and oxidizer that occurs at scales smaller than the LES filterwidth. The small-scale mixing process can be quantitatively characterized by two related variables, the subfilter scalar variance and the subfilter scalar dissipation rate. A recently proposed alternative dynamic modelling procedure for the subfilter scale dissipation rate, designed for use with transport equation based models for subfilter scalar variance, is analysed in this work. This new dynamic non-equilibrium modelling approach produces a nonlinear interaction between variance and dissipation rate predictions that makes it difficult to isolate the performance of any single modelling component in a conventional LES simulation. To gain a better understanding of the new model, a three-part study is undertaken here. The first part of the study uses a priori analysis to examine some novel aspects of the model’s computation and guide its practical implementation. In the second part of the study, detailed a posteriori analysis of the model is performed. This analysis suggests that the dynamic estimate of the dissipation rate model coefficient helps to compensate for over-prediction of variance production rates and improves the accuracy of variance prediction. However, improved modelling of the variance production term, which in turn depends on the accuracy of models for the subfilter scalar flux, is necessary to allow both the scalar variance and dissipation rate to be predicted accurately. Therefore, the third part of the study examines the effect of the scalar flux model on the predictions of the dynamic non-equilibrium model. Use of a mixed model for the fluxes, rather than a gradient-diffusion-only model, is found to improve variance predictions in some cases. 相似文献
6.
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames. 相似文献
7.
Amin Rasam Stefan Wallin Geert Brethouwer Arne V. Johansson 《Journal of Turbulence》2013,14(11):752-775
We analyse the performance of the explicit algebraic subgrid-scale (SGS) stress model (EASSM) in large eddy simulation (LES) of plane channel flow and the flow in a channel with streamwise periodic hill-shaped constrictions (periodic hill flow) which induce separation. The LESs are performed with the Code_Saturne which is an unstructured collocated finite volume solver with a second-order spatial discretisation suitable for LES of incompressible flow in complex geometries. At first, performance of the EASSM in LES of plane channel flow at two different resolutions using the Code_Saturne and a pseudo-spectral method is analysed. It is observed that the EASSM predictions of the mean velocity and Reynolds stresses are more accurate than the conventional dynamic Smagorinsky model (DSM). The results with the pseudo-spectral method were, in general, more accurate. In the second step, LES with the EASSM of flow separation in the periodic hill flow is compared to LES with the DSM, no SGS model and a highly resolved LES data using the DSM. Results show that the mean velocity profiles, the friction and pressure coefficients, the length and shape of the recirculation bubble, as well as the Reynolds stresses are considerably better predicted by the EASSM than the DSM and the no SGS model simulations. It was also observed that in some parts of the domain, the resolved strain-rate and SGS shear stress have the same sign. The DSM cannot produce a correct SGS stress in this case, in contrast to the EASSM. 相似文献
8.
9.
LIU Peng & JIN Yaqiu Key Laboratory of Wave Scattering Remote Sensing Information 《中国科学G辑(英文版)》2004,47(5):597-612
The Doppler (DP) spectrum of a moving target such as a ship, an iceberg or an air-plane above dynamic oceanic surfaces[1—3] is one of the most important subjects for ra-dar oceanic surveillance, target tracking and oceanic remote sensing[4—7]. With the ad-vancement of oceanic remote sensing and radar surveillance, the experimental observa-tion and theoretical modeling of oceanic clutter have been extensively studied, e.g. by using oceanic field measurement, wave tank experiment and some stud… 相似文献
10.
In this paper, a fast method is proposed to estimate the sonar cross section of acoustically large and complex underwater targets such as submarines and torpedoes. The proposed method is based on a deterministic scattering center model which constructs scattering center database by using a combining method of physical optics and geometric optics and then reconstructs sonar cross section patterns from that database with a polynomial interpolation with respect to the incident angle. The parametric studies to find appropriate intervals of the reference incident angle are systematically carried out for simple targets such as a flat square plate and an orthogonal dihedral. Moreover, to validate the proposed method, sonar cross sections of real-like targets such as a pressure hull and an idealized submarine are calculated. The comparisons show that the results by the proposed method are in good agreement with those by the direct calculation. 相似文献
11.
A turbulent lean-premixed propane–air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained. 相似文献
12.
ABSTRACTBy using the variational Monte Carlo (VMC) method, we calculated the 1sσg-state energies, the dissociation energies, and the binding energies of the hydrogen molecule and its molecular ion in the presence of an aligned magnetic field regime between 0 and 10?a.u. The present calculations are based on using two types of compact and accurate trial wave functions, which are put forward for consideration in calculating energies in the absence of a magnetic field. The obtained results are compared with the most recent accurate values. We conclude that the applications of the VMC method can be successfully extended to cover the case of molecules under the effect of a magnetic field. 相似文献