首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the conductance ( ) of a quantum dot (QD) in an AC potential at finite temperature. The Friedel–Langreth sum rule (FLSR) is generalized to include the effect of an AC potential and finite T. We have solved the Anderson Hamiltonian by means of a self-consistent procedure which fulfills the generalized FLSR. New features are found in the density of states (DOS) and in when an AC voltage is applied. Our model describes the effect of an AC potential on the transition from Kondo regime to a Coulomb-blockade behaviour as T increases.  相似文献   

2.
Non-linear charge and heat transport through a single-level quantum dot in the Coulomb blockade regime is investigated within the framework of non-equilibrium Green function formalism and power output and efficiency of the device are studied. It is found that maximum power as well as efficiency depends on the relative orientation of magnetic moments in electrodes and can vary with polarization factor p. In general, power output is suppressed in magnetic systems and decreases with polarization. The highest efficiency can be attained in antiparallel configuration, and moreover, it does not depend on p. Spin power as well as spin efficiency of the system is introduced and discussed. It is also shown that in the Coulomb blockade regime the (spin) efficiency of the device operating under maximum power conditions varies with temperature bias in a non-monotonic way and shows a flat maximum for low ΔT.  相似文献   

3.
We consider electron transport through quantum dots with large level spacing and charging energy. At low temperature and strong coupling to the leads, quantum fluctuations and the Kondo effect become important. They show up, e.g., as zero-bias anomalies in the current–voltage characteristics. We use a recently developed diagrammatic technique as well as a new real-time renormalization-group approach to describe charge and spin fluctuations. The latter gives rise to a Kondo-assisted enhancement of the current through the dot as seen in experiments.  相似文献   

4.
We study the thermopower and thermal conductivity of a gate-defined quantum dot, with a very strong Coulomb repulsion inside the dot, employing the X-boson approach for the impurity Anderson model. Our results show a change in the sign of the thermopower as function of the energy level of the quantum dot (gate voltage), which is associated with an oscillatory behavior and a suppression of the thermopower magnitude at low temperatures. We identify two relevant energy scales: a low temperature scale dominated by the Kondo effect and a T∼ΔTΔ temperature scale characterized by charge fluctuations. We also discuss the Wiedemann–Franz relation and the thermoelectric figure of merit. Our results are in qualitative agreement with recent experimental reports and other theoretical treatments.  相似文献   

5.
在淀积有纳米间隙栅电极、源电极和漏电极的衬底上生长量子点,制作出多岛结构的单电子晶体管.在77K温度下对源漏特性进行了测试,得到了库仑阻塞特性.并且成功抑制了单岛单电子晶体管中易出现的共隧穿效应,观察到较大的库仑阈值电压.对试验数据进行了分析,阐明了岛的不同结构组态产生的不同输运效果. 关键词: 单电子晶体管 量子点 库仑阻塞  相似文献   

6.
Zero-dimensional electron gases have been fabricated by the strain-patterning of a GaAs/AlAs heterojunction using amorphous carbon stressors. We have used steady-state, time-resolved and temperature-dependent photoluminescence measurements to probe the occupied density of states of the electron gases. We observe a novel lateral confinement mechanism and efficient transfer of modulation-doped electrons from the regions between the stressors to the quantum dots. In finite magnetic fields we have mapped the evolution of the electron states from which we estimate the number of electrons per dot to be 15.  相似文献   

7.
We study single-electron-transistor (SET) operation of the quantum dot (QD) in a strong magnetic field under weak illumination of far-infrared (FIR) radiation, which causes cyclotron resonance (CR) excitation inside the QD. We find that the SET conductance resonance is exceedingly sensitive to the FIR: It switches on (off) upon the excitation of just one electron to a higher Landau level inside the QD, whereby enabling us to detect individual events of FIR-photon (hν 6 meV) absorption.  相似文献   

8.
The Coulomb blockade (CB) in quantum dots (QDs) is by now well documented. It has been used to guide the fabrication of single electron transistors. Even the most sophisticated techniques for synthesizing QDs (e.g. MOCVD/MBE) result in an assembly in which a certain amount of disorder is inevitable. On the other hand, theoretical approaches to CB limit themselves to an analysis of a single QD. In the present work we consider two types of disorders: (i) size disorder; e.g. QDs have a distribution of sizes which could be unimodal or bimodal in nature. (ii) Potential disorder with the confining potential assuming a variety of shapes depending on growth condition and external fields. We assume a Gaussian distribution in disorder in both size and potential and employ a simplified mean field theory. To do this we rely on the scaling laws for the CB (also termed as Hubbard U) obtained for an isolated QD [1]. We analyze the distribution in the Hubbard U as a consequence of disorder and observe that Coulomb blockade is partially suppressed by the disorder. Further, the distribution in U is a skewed Gaussian with enhanced broadening.   相似文献   

9.
Near-field optical probing, or nanoprobing, achieves spatial resolution that surpasses the diffraction limit of light and makes possible the luminescence imaging and spectroscopy of single quantum dots in dense arrays of dots. We use optical nanoprobing to study self-organized InGaAs quantum dots grown on (3 1 1)B oriented GaAs substrates. Here, we emphasize a new feature of nanoprobing: pressure-induced strain modulation near the surface. Operating in near-field optical excitation–collection mode, the probe makes contact with the surface and exerts direct pressure whose main effect is a compressive uniaxial strain under the probe. By adjusting the applied pressure, we modulate the local strain environment in and around a quantum dot, but still preserve the capability to capture its near-field luminescence. Nanoprobe pressure effects modify the confinement potential and radiative emission of single quantum dots, and the coupling strength between dots. This opens new possibilities for the study and control of the optical and electronic properties of single- and coupled-quantum dots.  相似文献   

10.
介绍了玻璃中的半导体量子点。对玻璃中半导体量子点的生长过程、量子的电子态,量子尺寸效应、库仑阻塞效应及介电效应,做了比较全面的介绍。讨论了量子点的应用及发展前景。  相似文献   

11.
张荣  楚卫东  段素青  杨宁 《中国物理 B》2013,22(11):117305-117305
We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle.Employing the equation of motion method for the nonequilibrium Green’s function,we show that the oscillation of the dot,i.e.,the time-dependent coupling between the dot’s electron and the reservoirs,can destroy the Kondo effect.With the increase in the oscillation frequency of the dot,the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern.Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states.Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.  相似文献   

12.
We study the linear conductance of single electron devices showing Coulomb blockade phenomena. Our approach is based on a formally exact path integral representation describing electron tunneling nonperturbatively. The electromagnetic environment of the device is treated in terms of the Caldeira-Leggett model. We obtain the linear conductance from the Kubo formula leading to a formally exact expression which is evaluated in the semiclassical limit. Specifically we consider three models. First, the influence of an electromagnetic environment of arbitrary impedance on a single tunnel junction is studied focusing on the limits of large tunneling conductance and high to moderately low temperatures. The predictions are compared with recent experimental data. Second, the conductance of an array of N tunnel junctions is determined in dependence on the length N of the array and the environmental impedance. Finally, we consider a single electron transistor and compare our results for large tunneling conductance with experimental findings. Received 2 February 2000  相似文献   

13.
We report observation of the Kondo effect in the Coulomb blockade oscillations of an impurity quantum dot (IQD). This IQD is formed in the channel of a 100 nm gate length Silicon MOSFET. The quantitative analysis of the anomalous temperature and voltage dependence for the drain-source current over a series of Coulomb blockade oscillations is performed. It strongly supports the Kondo explanation for the conductance behavior at very low temperature in this standard microelectronics device. Received 13 November 2001 and Received in final form 18 February 2002  相似文献   

14.
We study the splitting of the Fano resonance in a Aharonov–Bohm interferometer with a quantum dot in each of its arms. Both intra- and inter-dot Coulomb repulsions are taken into account by employing the Keldysh nonequilibrium Green’s function technique. The single narrow Fano resonance in the noninteracting case is split into two in the presence of either intra- or inter-dot Coulomb interaction. We find that four Fano peaks emerge in the conductance or local density of states spectra when the two kinds of interactions exist simultaneously. Such behavior holds true for the accompanying broad Breit–Wigner type resonance. We also show that the positions of the Fano peaks can be tuned with the aid of the magnetic flux penetrating through the ring, which might have practical applications in device design or quantum computation.  相似文献   

15.
Quantum dots have been fabricated with single-wall carbon nanotubes (SWCNTs), and their transport properties have been measured at low temperatures. The single-electron transport measurements revealed the artificial atom characteristics with a shell structure and the Zeeman splitting of single particle states. They have been observed with the metallic SWCNT that includes many electrons, in striking contrast to the case of semiconductor artificial atoms that have a few electrons. The unique features in the SWCNT artificial atom are discussed in terms of the energy scales associated with the quantum dot.  相似文献   

16.
We present an experimental study of the fluctuations of Coulomb blockade peak positions of a quantum dot. The dot is defined by patterning the two-dimensional electron gas of a silicon MOSFET structure using stacked gates. The ratio of charging energy to single-particle energy is considerably larger than in comparable GaAs/AlGaAs quantum dots. The statistical distribution of the conductance peak spacings in the Coulomb blockade regime was found to be unimodal and does not follow the Wigner surmise. The fluctuations of the spacings are much larger than the typical single-particle level spacing and thus clearly contradict the expectation of random matrix theory. Measurements of the natural line width of a set of several adjacent conductance peaks suggest that all of the peaks in the set are dominated by electrons being transported through a single-broad energy level.  相似文献   

17.
In this paper, we have studied the effect of the thickness of the initial SiO2 layer (5–7 nm) on the charge and discharge properties of a 2D array of Si nanoparticles embedded in these SiO2 layers fabricated by ultra-low-energy ion implantation (ULE-II) and annealing. The structural characteristics of these nanocrystal-based memories (position of the nanocrystals with respect to the electrodes, size and surface density of the particles in the plane) were studied by transmission electron microscopy (TEM) and energy filtered TEM (EF-TEM). Electrical characterizations were performed at room temperature using a nano-MOS capacitor to be able to address only a few nanoparticles (nps). EFTEM gives the measurements of oxide thickness, injection, control and nps distances, size and density. IV and It measurements exhibit current peaks and random telegraph signal fluctuations that can be interpreted as due to quantized charging of the nps and to some electrostatic interactions between the trapped charges and the tunnelling current. We have shown that these characteristics strongly vary with the initial oxide thickness, exhibiting several charging/discharging events for the 7-nm-thick layer while charging events prevail in the case of 5-nm-thick layer. These results indicate that the probability of discharging phenomena is reduced when the tunnel layer thickness decreases.  相似文献   

18.
Photoluminescence spectroscopy has been used to probe the occupied electron states below the Fermi energy of zero-dimensional electron systems (0DESs) in both zero and finite magnetic fields. The arrays of modulation-doped quantum dots investigated were fabricated by both reactive-ion etching and strain-confining GaAs heterojunctions with a -layer of Be present in the GaAs, in order to improve luminescence efficiency. For the etched quantum dots we show that the low magnetic field dispersion T) of the acceptor recombination line is directly related to the magnetic field dependence of the total ground-state energy of interacting electrons in the quantum dots. For the strain-confined 0DESs we have mapped the magneto-dispersion of the quantum confined electron states to reveal 15 electrons per dot.  相似文献   

19.
Xue Zhao 《中国物理 B》2022,31(12):126802-126802
The yttria-stabilized zirconia (YSZ) is a famous thermal barrier coating material to protect hot-end components of an engine. As a characteristic feature of the YSZ, the surface roughness shall play an important role in the interface thermal conductance between the YSZ and gas, considering that the gas is typically at an extremely high temperature. We investigate the effect of the surface roughness on the thermal conductance of the YSZ-gas interface with surface roughness described by nanoscale pores on the surface of the YSZ. We reveal two competitive mechanisms related to the microstructure of the pore, i.e., the actual contact area effect and the confinement effect. The increase of the pore depth will enlarge the actual contact area between the YSZ and gas, leading to enhancement of the solid-gas interface thermal conductance. In contrast to the positive actual contact area effect, the geometry-induced confinement effect greatly reduces the interface thermal conductance. These findings shall offer some fundamental understandings for the microscopic mechanisms of the YSZ-gas interface thermal conductance.  相似文献   

20.
The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号