首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetoelectrochemical studies of gold nanoparticle quantized capacitance charging were carried out at ambient conditions. The single electron transfer responses were found to be sensitive to external magnetic fields, reflected in the enhancement of voltammetric peak currents and shifts of peak formal potentials with increasing magnetic field intensities. Additionally, splittings of voltammetric peaks were also observed upon the application of an external magnetic field. These phenomena might be partly attributed to the paramagnetic characters (electron parity) of nanosized gold particles which are contingent upon their charge states. These novel observations suggest that the nanoparticle electronic energy structures can be varied by magnetic fields, leading to molecular manipulations of the nanoscale charge-transfer chemistry.  相似文献   

2.
Metal nanoparticles coated with an organic monolayer, so-called monolayer protected clusters (MPCs), can show quantised charging at room temperature due to their sub-attofarad capacitance arising from the core size and the nature of the protecting monolayer. In this tutorial review, we examine the factors affecting the energetics of MPC charging. In the first section, the underlying physics of quantised charging is outlined and we give an overview of the various methods that can be used to measure single electron transfer to nanoparticles. In the subsequent sections, we discuss how electrochemical measurements can be used to give information on the quantised charging of freely diffusing and films of immobilised MPCs. The predictions of models used to determine MPC capacitance are compared with experimental data from the literature.  相似文献   

3.
Polymer-mediated self-assembly of functionalized Pd and SiO2 nanoparticles provides highly active hydrogenation and Heck coupling catalysts.  相似文献   

4.
Dendrimer-protected TiO2 nanoparticles were synthesized by hydrolysis of TiCl4 in solutions of poly(amido amine) dendrimers (64 terminals) under cooling. The morphology of dendrimers surrounding TiO2 nanoparticles depended on the terminal groups (amine, carboxyl, hydroxy) of dendrimers. The size (4.4-6.7 nm) of dendrimer-protected TiO2 nanoparticles was slightly smaller than that (7.5 nm) of bare TiO2 nanoparticles. The photodegradation of 2,4-dichlorophenoxyacetic acid revealed that dendrimer-protected TiO2 nanoparticles are more active as a photocatalyst than TiO2 nanoparticles without protectors. This suggests that the dendrimer acts as a reservoir of photoreacting reagents besides acting as a protector of nanoparticles.  相似文献   

5.
The origin of the extent of charging and the mechanism by which multiply charged ions are formed in electrospray ionization have been hotly debated for over a decade. Many factors can affect the number of charges on an analyte ion. Here, we investigate the extent of charging of poly(propyleneimine) dendrimers (generations 3.0 and 5.0), cytochrome c, poly(ethylene glycol)s, and 1,n-diaminoalkanes formed from solutions of different composition. We demonstrate that in the absence of other factors, the surface tension of the electrospray droplet late in the desolvation process is a significant factor in determining the overall analyte charge. For poly(ethylene glycol)s, 1,n-diaminoalkanes, and poly(propyleneimine) dendrimers electrosprayed from single-component solutions, there is a clear relationship between the analyte charge and the solvent surface tension. Addition of m-nitrobenzyl alcohol (m-NBA) into electrospray solutions increases the charging when the original solution has a lower surface tension than m-NBA, but the degree of charging decreases when this compound is added to water, which has a higher surface tension. Similarly, the charging of cytochrome c ions formed from acidified denaturing solutions generally increases with increasing surface tension of the least volatile solvent. For the dendrimers investigated, there is a strong correlation between the average charge state of the dendrimer and the Rayleigh limiting charge calculated for a droplet of the same size as the analyte molecule and with the surface tension of the electrospray solvent. A bimodal charge distribution is observed for larger dendrimers formed from water/m-NBA solutions, suggesting the presence of more than one conformation in solution. A similar correlation is found between the extent of charging for 1,n-diaminoalkanes and the calculated Rayleigh limiting charge. These results provide strong evidence that multiply charged organic ions are formed by the charged residue mechanism. A significantly smaller extent of charging for both dendrimers and 1,n-diaminoalkanes would be expected if the ion evaporation mechanism played a significant role.  相似文献   

6.
Scanning and transmission electron microscopy and dynamic rheology are used to thoroughly characterize the morphology and mechanical properties of bionanocomposite hydrogel prepared by mixing cationic chitosan with negatively charged particles of a synthetic clay (saponite) followed by gradual increasing of the charge of chitosan macromolecules by decreasing the pH of a medium. Gelation of the system is found to be due to the formation of a fibrillar three-dimensional network structure. It is shown that the size fibrils, the density of the network structure, and its mechanical properties are determined by the concentration ratio between the polysaccharide and saponite particles.  相似文献   

7.
Formation conditions are studied for bionanocomposite films prepared by mixing cationic chitosan with negatively charged nanoparticles of a synthetic clay (saponite) followed by gradual increasing of the charge of macromolecules by decreasing the pH of a medium. The data on the swelling of the bionanocomposite films in water are used to determine the stoichiometric ratio between the concentrations of macromolecules and nanoparticles that provides the most intense electrostatic interactions stabilizing the films. Their properties and structure are investigated by means of scanning electron microscopy, dynamic thermomechanical analysis, and small-angle X-ray scattering. The films are shown to occur in a glassy state and undergo a number of phase transitions, the temperatures of which depend on the chitosan-to-saponite concentration ratio. In particular, their glass transition temperature increases from 62 to 175°C when passing to the stoichiometric composition. The bionanocomposite films are found to have a layered structure. The layers are, in turn, composed of highly uniform microsized plates 20?C30 nm thick. Small-angle X-ray scattering shows a structural order with a periodicity of 1.78 nm. The structure of the bionanocomposite films is discussed.  相似文献   

8.
S Ozturk  YA Hassan  VM Ugaz 《Lab on a chip》2012,12(18):3467-3473
We describe a simple experimental tool that enables stability of multicomponent nanoparticle suspensions to be readily assessed by establishing a confinement-imposed chemical discontinuity at the interface between co-flowing laminar streams in a microchannel. When applied to examine Al(2)O(3) nanoparticle suspensions, this method readily reveals compositions that are susceptible to aggregation even when conventional bulk measurements (zeta potential, dynamic light scattering, bulk viscosity) suggest only subtle differences between formulations. This microfluidic stability test enables simple and rapid assessment of quality and variability in complex multicomponent mixtures for which few, if any, comparable data exist. The paradoxical ease at which localized aggregation can be triggered in suspensions that would otherwise appear stable also serves as a caution to researchers undertaking tracer-based studies of nanomaterial suspensions.  相似文献   

9.
Quantized double-layer charging of highly monodisperse metal nanoparticles   总被引:1,自引:0,他引:1  
We describe unprecedented resolution of electrochemically observed quantized double layer (QDL) charging, attained with use of reduced solution temperatures and with an annealing procedure that produces hexanethiolate monolayer protected gold clusters (C6 MPCs) with a high level of monodispersity in charging capacitance, C(CLU). The spacing DeltaV = e/C(CLU) on the electrochemical potential axis between one electron changes in the electronic charge of nanoscopic metal particles is determined by their effective capacitance C(CLU). The high monodispersity of the C6 MPCs with Au(140) cores facilitates (a) detailed rotated disk and cyclic voltammetric measurements, (b) simulation of QDL waveshapes based on assumed reversible, multivalent redox-like behavior, (c) determination of nanoparticle diffusion rates, and (d) observation of as many as 13 changes in the MPC charge state, from MPC(6-) to MPC(7+). The single electron QDL charging peaks are quite evenly spaced (DeltaV constant) at potentials near the MPC potential of zero charge, but are irregularly spaced at more positive and negative potentials. The irregular spacing is difficult to rationalize with classical double layer capacitance ideas and is proposed to arise from a correspondingly structured (e.g., not smooth) density of electronic states of the nanoparticle core, resulting from its small HOMO/LUMO gap and incipiently molecule-like behavior.  相似文献   

10.
Ion-induced rectification of nanoparticle quantized capacitance charging was studied using nanoparticle self-assembled monolayers in aqueous solutions in the presence of some unique electrolyte ions. The rectified charging features were interpreted on the basis of a Randles equivalent circuit where the binding of hydrophobic electrolyte ions to surface-confined particle molecules led to the manipulation of the electrode interfacial capacitance. It was found that the rectification effects were directly related to the ion hydrophobicity, manifested by the cathodic (anodic) shift of the onset potential with anions (cations) of increasing hydrophobicity Additionally, the voltammetric responses evolved from those similar to conventional molecular diodes to those of quantized charging rectifiers with increasing anion hydrophobicity. Electron-transfer kinetics evaluated by using various electrochemical methods yielded a rate constant within the range of 10-100 s(-1) which decreased with increasing length of the alkyl spacers with a coupling coefficient (beta) within the range of 0.8-0.9. Comparisons with conventional electroactive functional moieties were also discussed.  相似文献   

11.
On the basis of copper-enhanced gold nanoparticle tags as an amplification approach, we introduced, in this paper, magnetic nanoparticles for further improving performance of electrochemical immunoassay by anodic stripping voltammetry (ASV) at a glassy-carbon electrode. Due to the use of antibody-immobilized magnetic nanoparticles, the immunoreaction between antibody and antigen takes place in a homogeneous bulk solution phase. Compared with traditional solid interface reaction, the proposed strategy can provide some advantages such as easy of separation, shorter analytical time, wider linear range, and lower detection limit. It was also successfully applied to HBsAg determination in a linear range of 0.1-1500 ng mL−1 with a detection limit of 87 pg mL−1. The proposed analytical strategy holds good selectivity, sensitivity and repeatability and also great promise for the extended application in the fields of clinical diagnosis, bio-affinity assay and environmental monitoring.  相似文献   

12.
Reactivity of halide anion (Cl?) with monolayer-protected gold nanoclusters (MPCs) of 1.8 nm in diameter has been studied. Typically, thin films of MPCs were prepared on an electrode surface and immersed in aqueous solutions containing Cl?. It was observed that Cl? inevitably resulted in the destruction of electrochemical charging of MPC films, which was studied and analyzed in details by cyclic voltammetry, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy measurements. The destruction is most likely due to the strong affinity of Cl? for the surface of MPCs, leading to a significant variation of the surface structure and thereby quenching the electrochemical charging property.  相似文献   

13.
14.
Reversible magneto-switchable quantum charging of a Au nanoparticle array associated with a Au electrode is observed in the presence of hydrophobic magnetic nanoparticles attracted to the functionalized electrode surface.  相似文献   

15.
Results of molecular dynamics simulations are presented for the pair distribution function between nanoparticles in an explicit solvent as a function of nanoparticle diameter and interaction strength between the nanoparticle and solvent. The effect of including the solvent explicitly is demonstrated by comparing the pair distribution function of nanoparticles to that in an implicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the solvent is represented by standard Lennard-Jones particles. The diameter of the nanoparticle is varied from 10 to 25 times that of the solvent for a range of nanoparticle volume fractions. As the strength of the interactions between nanoparticles and the solvent increases, the solvent layer surrounding the nanoparticle is formed which increases the effective radii of the nanoparticles. The pair distribution functions are inverted using the Ornstein-Zernike integral equation to determine an effective pair potential between the nanoparticles mediated by the introduction of an explicit solvent.  相似文献   

16.
Utilization of CdSe nanoparticle suspension for latent fingermarks on a multitude of non-porous and semi-porous surfaces has been demonstrated in this paper. Whether it is dark or light, the color of adhesives has no effect on the results of developing, because of the strong fluorescence excited by irradiation with UV LEDs. Enough contrast could be obtained for imaging. As an effective stabilizer for suspension which is commonly used in fingermark developing, Tween 20 with different concentration was also applied for better results. However, it did not work for nanometer-sized particles, which have already been stable in suspension. To broaden the scope of its application, different excitation systems were adopted. Well-contrast images could be obtained when 365 nm UV light, 440 nm blue light and daylight were applied. TiO2 SPR (small particle reagent) and gentian violet were used to compare with CdSe nanoparticle suspension under daylight. The results indicated that it produced significantly less background development and better contrast.  相似文献   

17.
This paper begins with an extensive review of the formation of gas bubbles, with a particular focus on the dynamics of triple lines, in a pure liquid and progresses into an experimental study of bubble formation on a micrometer-sized nozzle immersed in a quiescent pool of aqueous gold nanofluid. Unlike previous studies of triple line dynamics in a nanofluid under evaporation or boiling conditions, which are mainly caused by the solid surface modification due to particle sedimentation, this work focuses on the roles of nanoparticles suspended in the liquid phase. The experiments are conducted under a wide range of flow rates and nanoparticle concentrations, and many interesting phenomena are revealed. It is observed that nanofluids prevent the spreading of the triple line during bubble formation, i.e. the triple line is pinned somewhere around the middle of the tube wall during the rapid bubble formation stage whereas it spreads to the outer edge of the tube for pure water. A unique ‘stick-slip’ movement of the triple line is also observed for bubbles forming in nanofluids. At a given bubble volume, the radius of the contact line is found to be smaller for higher particle concentrations, but a reverse trend is found for the dynamic bubble contact angle. With the increase of particle concentration, the bubble frequency is raised and the bubble departure volume is decreased. The bubble shape is found to be in a good agreement with the prediction from Young-Laplace equation for given flow rates. The influence of nanoparticles on other detailed characteristics related to bubble growth inside, including the variation of bubble volume expansion rate, the radius of the curvature at the apex, the bubble height and bubble volume, is revealed. It is suggested that the variation of surface tensions and the resultant force balance at the triple line might be responsible for the modified dynamics of the triple line.  相似文献   

18.
Electrochemical quartz crystal microbalance (EQCM) was employed to investigate the dynamics of rectified quantized charging of gold nanoparticle multilayers by in situ monitoring of the interfacial mass changes in aqueous solutions with varied electrolytes. EQCM measurements showed that interfacial mass changes only occurred at potentials more positive than the potential of zero charge (PZC), where nanoparticle quantized charging was well-defined, whereas in the negative potential regime where only featureless voltammetric responses were observed, the QCM frequency remained virtually invariant. This was ascribed to the fact that nanoparticle quantized charging was induced by the formation of ion-pairs between hydrophobic electrolyte anions (PF6-, ClO4-, BF4-, and NO3-) and positively charged gold nanoparticles. Based on the total frequency changes and the number of electrolyte anions adsorbed onto the particle layers, the number of water molecules that were involved in the ion-pairing processes was then quantitatively estimated at varied particle charge states, which was found to increase with increasing hydrophobicity of the anions. Additionally, the electron-transfer dynamics of the gold particle multilayers were also evaluated by electrochemical impedance measurements. It was found that the particle electron-transfer rate was about an order of magnitude slower than that of the ion diffusion and binding.  相似文献   

19.
Single, double and triple charging of poly(propylene glycol) (PPG) (Mn = 1900 g/mol) in the presence of binary mixtures of cations (Li+, Na+, K+, Cs+, and NH4+) under electrospray ionization (ESI) conditions were investigated. For these studies, sodium ion was selected as the reference cation, and the resulting ion-intensities were evaluated as a function of the [Na+]/[C+] ratio (where C+ is the other cation, i.e., Li+, K+, Cs+ and NH4+). A linear relationship was found between INa+/IC+)and [Na+]/[C+] (INa+ and IC+ stand for the intensity of the singly charged PPG molecules cationized with Na+ and C+ ions, respectively). The slope of the INa+/IC+--[Na+]/[C+] plot (alpha) indicates the binding selectivity of Na+ ions to PPG chains with respect to cation C+. In the case of the doubly charged PPG chains, the INaNa2+/INaC2+ and INaC2+/ICC2+ versus [Na+]/[C+] ratio also yield straight lines with slopes of approximately alpha/2 and 2alpha, respectively (INaNa2+, INaC2+ and ICC2+ are the intensity of the doubly charged PPG chains cationized with two Na+ ions, Na+ and C+ ions, and two C+ ions, respectively). Similarly, linear dependences with the [Na+]/[C+] ratio for the corresponding intensity ratios of the triply charged PPG were found. Based on the value of alpha, the selectivity of the cations was found to increase in the order of Li+ < Cs+ approximately Na+ < K+ approximately NH4+. The observed relative ion intensities are interpreted on the basis of the solution state equilibrium between PPG and the cations. In addition, the investigations showed that the abundances of the doubly and triply charged PPG-containing mixed cations can be optimized in a simple way using the value of alpha.  相似文献   

20.
A photon-to-thermal energy conversion nanosystem based the near-infrared irradiation of one-dimensional gold nanoparticles (nanorods) is highly efficient and tunable to the incident wavelength. Using ambient photothermal detection, we observed a temperature rise of ca. 30 degrees C upon irradiating an aliquot of an aqueous nanoparticle suspension with a laser for 5 s. The temperature can be elevated even higher by embedding the particles into a poorly thermally conducting solid medium. The illuminated area of a sample containing nanorod particles embedded in a polyurethane matrix can be heated to >100 degrees C upon irradiation for 1 min. This optothermal conversion efficiency can be turned on selectively by tuning the wavelength to match that of the surface plasmon resonance of the particles. This specificity, with respect to the wavelength of the incident light, makes these highly efficient, particle-based, optothermal nanoconvertors suitable for potential use in multicolor detection on biochips and related sensors and as ideal contrasting agents for optoacoustic biomedical imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号