首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of platinum-promoted sulfated zirconia alumina catalysts (SZA) with different amounts of platinum (0.5, 1, and 2 wt%) were synthesized. Two other catalysts were prepared by mechanically mixing different proportions of the Al-promoted sulfated zirconia with Pt/Al(2)O(3). The 650 degrees C calcined catalysts were characterized by N(2) adsorption/desorption (BET), TPR, and TPD analysis. Butane isomerization activity of the catalysts was studied at 270 degrees C, varying the pretreatment environment and carrier gases. Though the textural properties of the catalysts did not change significantly with platinum loading, the maximum surface area of 116 m(2)/g was exhibited by the catalyst with 1 wt% Pt loading. Under the studied reaction conditions, the air-pretreated catalysts (sulfated zirconia alumina (SZA) and platinated SZA) showed higher n-butane conversion than the N(2)-pretreated catalyst. However, nitrogen was a better carrier gas than H(2), CO(2) or air, and CO(2) and air deactivated the catalyst very fast. Unlike the platinated SZA catalysts, the mechanically mixed catalysts showed an induction phenomenon. A redox mechanism is suggested for butane isomerization over these catalysts. The catalyst SZA was also found to be active for alkylation of benzene with isopropanol, which gave 93% selectivity toward cumene.  相似文献   

2.
Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.  相似文献   

3.
夏勇德  华伟明  高滋 《催化学报》1999,20(5):487-488
The conversion of n-butane to isobutane over strong acid catalysts is an important process in the petrochemical refining industry, because isobutane is a valuable precursor to methyl-tert-butyl ether and other fuel additives. Many reports dealing with sulfate promoted zirconia as catalysts for n-butane isomerization have appeared[1, 2].  相似文献   

4.
采用脉冲微反装置评价了纯正丁烷、含有不同比例异丁烷的混合丁烷在Au改性的纳米HZSM-5催化剂上的反应活性和异构化选择性。结果表明,在300℃时,载金量为1.31%的催化剂上纯正丁烷原料的转化率可达7.0%,异丁烷选择性可达80%以上。相比之下,在纳米HZSM-5载体上正丁烷的转化率只有0.55%,异丁烷选择性仅为11.67%。在Au负载量为0.12%~1.91%,随着Au负载量的增加,正丁烷转化率先增后减,异丁烷选择性在低负载量时增加明显。在反应温度低于400℃时,纯正丁烷在载金催化剂上主要发生异构化反应;高于400℃时,主要发生裂解和芳构化等反应,即400℃是正丁烷在脉冲微反条件下异构化和裂解等反应的分水岭。另外,混合丁烷的组成对正丁烷异构化反应有一定影响,但在适当温度下正丁烷异构化时裂解产物很少,表现出金属-酸双功能催化特征。Au+在反应中发挥了脱氢和加氢作用。  相似文献   

5.
采用“沉淀-浸渍”法制备一系列不同硫酸负载量的SO42-/ZrO2-Al2O3催化剂,利用N2吸附-脱附、Py-FTIR、XRD等手段对催化剂进行表征。在常压、200 ℃、H2:C4=2:3和质量空速为3 h-1的反应条件下,在固定床微型反应评价装置上考察了硫酸负载量对SO42-/ZrO2-Al2O3催化正丁烷异构化反应性能的影响。Py-FTIR结果表明,硫酸化处理为催化剂表面提供了丰富的Brønsted酸性位,其中,强Brønsted酸性位在正丁烷异构化反应中起重要作用,因此,硫酸化处理可显著提高正丁烷异构化活性,而Lewis酸性位与之没有直接关系。  相似文献   

6.
Mn-promoted sulfated zirconia catalysts (2 wt% Mn) were investigated in situ, during the catalyst activation, isomerization of n-butane, and subsequent re-activation, using X-ray absorption spectroscopy of the Mn K-edge. The average valence of Mn in the catalysts, as determined from the edge position, was found to change from either 2.65 or 2.77 in the calcined samples to about 2.5 during activation in He (703 K for 30 min). During the isomerization of n-butane (1% in He, 80 ml min-1, 0.5 g catalyst at 333 K), the average Mn valence did not change further. When the catalyst was activated in 50% O2 the average valence only decreased from about 2.78 to 2.72. In this case, the average valence during the isomerization reaction decreased at a nearly constant rate both during the induction of activity and deactivation of the catalyst. The data do not support a stoichiometric redox reaction involving the promoter as initiator of the isomerization. However, a higher Mn valence after activation was indicative of a higher maximum conversion. It is concluded that the promoter cations function through modification of the structure of the zirconia.  相似文献   

7.
 合成了AlPO-11,SAPO-11及其含杂原子Co或Mn的磷铝系列分子筛.XRD结果证实,合成产物均具有AEL分子筛晶体结构.用X射线荧光光谱测定了晶体的元素组成,并用NH3-TPD考察了样品的酸性和酸分布.在以合成的分子筛为基质所制备的催化剂上进行了丁烷异构化和一步异构脱氢反应.结果表明,载0.3%Pd的SAPO-11分子筛催化剂具有最高的丁烷异构化选择性,而在丁烷一步异构脱氢反应中,含金属杂原子的催化剂具有更高的异丁烯选择性.  相似文献   

8.
新型固体酸SO42-/Al2O3-Al 的制备与表征   总被引:3,自引:1,他引:3  
采用铝阳极氧化法制备了A12O3-Al一体型载体.并通过浸渍硫酸的方法制备了新型固体酸SO4^2-/Al2O3-Al催化剂.采用BET、XRD、XPS和NH3-TPD对其结构和酸性进行了表征.结果表明,该催化剂具有合适的孔结构.Al2O3-Al载体为无定形结构.NH3-TPD结果表明.该催化剂同时具有弱酸及强酸位.用乙酸/乙醇酯化催化反应评估了该固体酸的催化性能.  相似文献   

9.
通过水热法合成了一系列水合氧化锆,以之为载体采用浸渍法制备了Pt/WO3-ZrO2催化剂,考察了氢氧化锆的水热温度对Pt/WO3-ZrO2异构化活性的影响.通过X射线衍射、NH3程序升温脱附及H2程序升温还原表征了样品的晶相结构、酸性及还原性能.结果表明,水合氧化锆及以此为载体的催化剂的晶相结构均随着氢氧化锆水热温度的变化而变化,水热温度升高,四方相氧化锆比例下降.具有一定晶相结构的水合氧化锆为载体的催化剂具有较无定形氢氧化锆为载体的催化剂更多的强酸中心和更高的异构化催化活性.高的异构化活性可能与催化剂上更多的强酸中心有关。  相似文献   

10.
固体强酸;异丁烷-丁烯烷基化反应催化剂的研究  相似文献   

11.
S~2O~8^2^-处理的ZrO~2固体超强酸上的正丁烷异构化反应   总被引:17,自引:0,他引:17  
夏勇德  华伟明  高滋 《化学学报》1999,57(12):1325-1331
首次报道了由浸渍过硫酸根的方式制备固体超强酸。讨论了焙烧温度、浸渍浓度以及ZrO~2前驱体沉淀条件对样品性质的影响,并研究了它们对正丁烷异构化反应性能。实验结果表明,600-650℃焙烧、0.25-0.50mol/LS~2O~8^2^-浸渍反加沉淀的ZrO~2具有最高超强酸性。与相同条件下制备的SO~4^2^-/ZrO~2相比,S~2O~8^2^-/ZrO~2上正丁烷250℃异构化活性是SO~4^2^-/ZrO~2的2倍,可能是由于它具有较多的中强酸位并具有与SO~4^2^-/ZrO~2不同的活性位结构。  相似文献   

12.
氮氧化物(NO_x)是主要的大气污染物之一.氨气选择性催化还原法(NH_3-SCR)是目前去除固定源排放的氮氧化物的最有效方法,被广泛用于燃煤或者生物质的火电厂中.催化剂是NH_3-SCR法的核心,其中V_2O_5-WO_3/TiO_2催化剂是主要的商业SCR催化剂;但是V_2O_5有毒,对环境的影响很大;另外,该催化剂具有较高的SO_2氧化性能.因而研究者一直在探索新型的SCR催化剂.SO_2是燃煤电厂烟气中的典型气体之一,所以抗硫性能是催化剂的一个重要指标.在SCR反应条件下,SO_2和O_2容易与氧化物催化剂发生反应生成稳定性较高的硫酸盐,覆盖在催化剂表面从而引起催化剂失活.但已有研究发现,硫化会提高K中毒后的V_2O_5-WO_3/TiO_2催化剂的活性.并且,短时间的硫化可以明显提高CuO/Al_2O_3的NH_3-SCR活性.硫酸盐催化剂或许具有较低毒性和较高抗硫性能,应该是一种有前景的SCR催化剂.本文以商业纳米TiO_2为载体,采用湿式浸渍法制备了一系列的CuSO_4/TiO_2催化剂.在自制的活性评价装置上测试了样品的NH_3-SCR活性并且在340℃下连续24 h测试了SO_2、水蒸气及两者共同作用对催化剂活性的影响.使用N_2等温吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、H_2程序升温还原(H2-TPR)和NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征.另外,采用原位红外漫反射光谱研究了CuSO_4/TiO_2催化剂上的NH_3-SCR反应过程.N_2等温吸附-脱附结果表明,负载的CuSO_4没有明显改变载体的孔结构.而XRD结果仅显示锐钛矿TiO_2的衍射峰,说明CuSO_4在载体上有较好的分散度或者CuSO_4的含量低于检测限.XPS结果显示,催化剂中的铜主要以Cu~(2+)形式存在,硫主要以SO_4~(2-)形式存在,而氧主要以晶格氧和吸附氧两种形式存在,并且CuSO_4的存在会增加催化剂中吸附氧的含量.H_2-TPR结果表明,随着CuSO_4含量的增加,催化剂的氧化还原能力逐渐增强.NH_3-TPD结果表明,催化剂表面的酸性位数目随着样品中CuSO_4含量的增加而增加.纯TiO_2的NH_3-SCR活性很差,当温度从300℃增加到450℃时,最高NO_x转化率仅为32.7%.但当CuSO_4负载到TiO_2上以后,催化剂活性明显提高.在反应温度高于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率在94%以上,与商业V_2O_5-WO_3/TiO_2催化剂相当,并且其N_2O生成量低于商业催化剂.不过,当温度低于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率明显低于商业催化剂,说明CuSO_4/TiO_2催化剂的活性仍有待改善.连续24 h测试了SO_2、水蒸汽及两者的共同作用对CuSO_4/TiO_2催化剂活性的影响.结果显示,单独的水蒸气会导致活性轻微下降,但SO_2以及两者共同存在时对催化剂的活性基本没有影响.CuSO_4/TiO_2催化剂的NH_3吸附红外光谱表明,催化剂上存在Lewis和Bronsted两种酸性位,但Bronsted酸性位上的NH_4~+稳定性较差,280℃时即基本消失.在高温时,NH_3主要吸附在Lewis酸性位上且CuSO_4/TiO_2催化剂对NO_x的吸附能力较差,红外光谱未检测到NO_x的吸附峰.380℃下,当NO和O_2通入预吸附NH_3的催化剂样品时,属于Lewis酸性位上NH_3的红外峰明显下降,说明Lewis酸性位上吸附的NH_3参与了反应.CuSO_4/TiO_2显示出高的抗硫抗水性能和比较好的NH_3-SCR活性,应该是一种有应用前景的SCR催化剂.CuSO_4可以增加催化剂的酸性位数目和吸附氧量.根据原位红外漫反射结果,CuSO_4/TiO_2上的SCR反应遵循Eley-Rideal机理.气相的NO与吸附在Lewis酸性位上的NH_3反应生成N_2和H_2O或许是主要的反应途径,并且吸附氧可能会促进这个过程.  相似文献   

13.
Superacid catalyst SO42--ZrO2/TiO2 was applied in esterification of Acetic Acid and Butanol. The particle size of ZrO2 in the catalyst was about 12.5 nm. In catalyst preparation conditions, the effect factor order on catalytic activity is H2SO4 concentration > calcination temperature > ZrO2 supported content. The optimum preparation condition is as follows: ZrO2 content 3.5g/g; calcination temperature 600℃, and H2SO4 concentration 0.5mol/L. The catalytic activity is 96.5 vol%.SO42-/MxOy solid superacid is a kind of green catalyst, whose application perspective is bright. In this paper, SO42--ZrO2/TiO2 solid superacid was prepared with nanometer compound carrying method. The acidic strength of catalysts was measured with the following Hammett indicators, 2,4-dinitrofluorobenzene (H0=-14.52) and p-nitrochlorobenzene (H0=-12.70). Catalytic activity was evaluated with esterification reaction of Acetic Acid and Butanol. Reaction temperature was at 105℃, and reaction time was only 1h. The conversion rate of Acetic Acid was analyzed by a gas chromatograph (GC-14C SHIMADZU in Japan)The experimental results showed that H2SO4 concentration had more influences on catalytic activity than other two factors, calcination temperature and ZrO2 supported content. Since sulfur absorbed on the surface of metal oxides is necessary to the acidity of SO42-/MxOy solid superacid,H2SO4 concentration in impregnation solution is needed enough high. But, it can't be too much high,otherwise, Zirconium sulfate formed on the catalyst surface will be harmful influences on catalytic activity. In researched cover, 0.5mol/L H2SO4 concentration is the most suitable, and the catalyst prepared with this concentration has very strong acidity.The optimum preparation condition is as follows: ZrO2 content 3.5g/g; calcination temperature 600℃, and H2SO4 concentration 0.5mol/L. In the catalyst prepared with above conditions, the acidic strength (H0) of the catalyst is smaller than <-14.52, and catalytic activity is 96.5 vol%. When it was re-used in esterification reaction, catalytic activity decreased gradually with re-used times increasing(seen in Table 1). But after catalyst is used repeatedly up to five times, catalytic activity (84.3 vol %)is still higher than that of H2SO4 catalyst.The X-ray diffraction patterns showed that ZrO2 supported in TiO2 belonged tetragonal zirconia phases. Through the calculation of Scherrer formula, the particle size of ZrO2 in the catalyst is about 12.5 nm. After SO42- promoted nanometer ZrO2/TiO2 compound carrier, the diffraction peaks of tetragonal zircoma become broader and the strength weaker. It shows that adding SO4 ions restrains the crystallization of ZrO2, diminishes the size of particles. This might be why SO42--ZrO2/TiO2 has high catalytic activity and stability in acidic catalysis reaction.  相似文献   

14.
Effects of Zr/Ti molar ratio in SO42-/ZrO2-TiO2 solid acid catalyst calcined at different temperatures on its surface properties and catalytic activity were thoroughly investigated in this paper. The physicochemical characteristics of prepared samples were determined by N2 adsorptiondesorption, XRD, NH3-TPD and XPS techniques, respectively. It was found that the crystallization temperature of the samples increased after the combination of ZrO2 and TiO2; and phase transformations from the anatase to the rutile of TiO2 species and the tetragonal to the monoclinic of ZrO2 species were effectively suppressed at higher temperature. The sample with a Zr/Ti molar ratio of 3/1 calcined at 450℃ showed the highest surface area and the most acid sites among all the tested samples. The acid site densities of samples were relatively closed to each other if they were calcined at the same temperature, however, decreased with the calcination temperature. The result indicates that the sulfur content in samples is a crucial factor to control the acid site density. Calcining the sample at 650℃ and higher temperatures resulted in a significant desorption of sulfate ion on the samples. The synthesized samples were evaluated as a potential catalyst for glucose conversion under the near-critical methanol conditions (200℃/4 MPa). The results suggested that the relatively weaker acid sites of the catalyst were more favorable for the accumulation of methyl glucosides, while the moderate acid sites were responsible for the formation of methyl levulinate. The catalytic activity for methyl levulinate production almost increases linearly with the catalyst acid site density. The catalyst deactivation is due to the loss of sulfate ion and the two catalysts with Zr/Ti molar ratios of 3/1 and 1/3 could effectively alleviate the deactivation caused by sulfate solution in the reaction medium and can be reused after calcination with the reuse rate of over 90% in terms of the methyl levulinate selectivity.  相似文献   

15.
Sulfated zirconia (SZ) and sulfated zirconia promoted with 2 wt % manganese (MnSZ) or iron (FeSZ), all active in n-butane isomerization, were investigated using diffuse reflectance Fourier transform IR spectroscopy (DRIFTS). By adsorption of H(2) at 77 K or of n-butane at room temperature, it was found that the promoters neither enhance the Lewis nor the Br?nsted acid strength. SZ and promoted SZ do not exhibit higher acid strength than zeolites. In a batch experiment using 70 hPa of H(2), SZ did not react at 473 K. Reaction of H(2) with MnSZ produced water (band at 5242 cm(-1)) and a decrease in the sulfate groups (multiple bands). Heating of SZ in 10 hPa n-butane to 573 K caused total reduction of sulfate to H(2)S (2583, 2570 cm(-1)) and partial and total oxidation of butane to olefinic species (3062 cm(-1)), CO(2), and water. MnSZ and FeSZ reacted with n-butane already at 373 K; products of skeletal isomerization (methyne CH vibration at 2910 cm(-1)) were detected and sulfate groups were consumed. Rather than increasing the acidity, the promoters enhance the oxidation potential of sulfate and facilitate alkane activation via oxidative dehydrogenation.  相似文献   

16.
尚磊  吴明亮 《分子催化》2020,34(1):28-35
气相催化是一种绿色环保的化工方法.氟氯烯烃是一种重要的化工原料,其中顺式和反式结构的氟氯烯烃具有较大的物理属性差异.我们旨在研发一种气相催化异构化氟氯烯烃的方法.首先以CF_3CCl=CClCF_3为原料,讨论了不同催化剂的气相异构化效率.其次,采用XRD、 TPD、 BET、 XPS、 GC、 GC-MS等手段讨论了催化剂的组成、酸性强度、催化剂表面酸性种类、催化剂活性组分、异构化产物的组成情况.在此基础之上,提出了异构化的机理解释.最后,采用4种不同原料,验证了上述机理解释.为工业化生产提供了重要的理论依据.  相似文献   

17.
The ideal gasoline must have a high pump octane number, in the 86 to 94 range, and a low environmental impact. Alkanes, as a family, have much lower photochemical reactivities than aromatics or olefins, but only the highly branched alkanes have adequate octane numbers. The purpose of this work is to examine the possibilities of extending the technological alternative of paraffin isomerization to heavier feedstocks (i.e., n-heptane) using non-conventional catalytic systems which have been previously proposed in the literature: a Pt/sulfated zirconia catalyst and a molybdenum sub-oxide catalyst. Under the experimental conditions at which these catalysts have been evaluated, the molybdenum sub-oxide catalyst maintains a good activity and selectivity to isomerization after 24 h, while the Pt/sulfated zirconia catalyst shows a higher dimethylpentanes/methylhexanes ratio, probably due to a lower operating temperature, but also a high formation of cracking products, and presents signs of deactivation after 8 h. Though much remains to be done, the performance of these catalysts indicates that there are good perspectives for their industrial application in the isomerization of n-heptane and heavier alkanes.  相似文献   

18.
A series of hydrous zirconia samples were prepared by the hydrothermal method, and the Pt/WO3-ZrO2 catalyst was prepared by impregnation. The effects of hydrothermal temperature of Zr(OH)4 on the isomerization activity of the catalyst was investigated. The crystalline structure, acidity, and reduction properties of the catalyst were characterized by X-ray diffraction, NH3 temperature-programmed desorption, and H2 temperature-programmed reduction, respectively. The results indicated that the crystalline structure of hydrous zirconia and the catalyst varied with the hydrothermal temperature, and the increase of hydrothermal temperature reduced the fraction of tetragonal zirconia. Strong acid sites on the catalyst and the isomerization activity increased with the crystallization of Zr(OH)4. It was proposed that the higher isomerization activity may be related to the existence of large numbers of strong acid sites.  相似文献   

19.
Sulfated zirconia catalysts were prepared by sol-gel process using a new method allowing the control of the hydrolysis step of zirconium alkoxides. Prepared samples were characterized by N2 adsorption (desorption) at 77 K, XRD, chemical analysis of total sulfur and XPS. Catalytic properties have been evaluated in n-butane and n-hexane isomerization reactions. Obtained results show that time necessary for gelation is significant and depends considerably on the nature of the zirconium precursor. Concerning the properties of the solids obtained by this method, it has been noted that the use of the zirconium propoxide led to a better retention of the sulfate species, which improves activity during isomerization reactions. It has been found also that an initial S/Zr molar ratio equal to 0.5 allowed to obtain an optimal sulfur content and a high specific surface area.  相似文献   

20.
SO_4~(2-)促进型多元氧化物超强酸催化剂上丁烷异构化反应   总被引:1,自引:0,他引:1  
考察了一系列SO促进型多元氧化物超强酸催化剂的正丁烷异构化反应性能.在ZrO2中添加Ni、Fe、Cr、Mn和V等第二和第三组份金属元素可有效地提高催化剂在氮气气氛下的异构化活性,但催化剂活性下降很快.改成氢气气氛可使部分多元氧化物催化剂的积炭速度减缓,进一步提高活性和稳定性.载铂对提高SO/ZrO2催化剂的活性和稳定性是有效的,但对多元氧化物催化剂无积极作用.在临氢反应过程中,添加的金属元素价态未发生变化,催化剂的稳定性与积炭量相对应,烧炭以后初活性可完全恢复,积炭可能是造成催化剂迅速失活的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号