首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
为进一步研究过渡金属离子与席夫碱配合和的结构与性能的关系,本文报道双-[N-(4-取代苯基)-水杨醛亚胺]合锌的晶体结构.  相似文献   

2.
室温下将[NEt~4]~3[Fe(CN)~6]和[Mn(salophen)(H~2O)(CH~3OH)]ClO~4反应,得到了超分子化合物[NEt~4][Mn(salophen)(H~2O)~2]~2[Fe(CN)~6]·H~2O·CH~3OH(salophenH~2=双水杨醛缩邻苯二胺),并对其进行了晶体结构测定。结果表明,该晶体属三斜晶系,空间群P1,晶胞参数a=1.2150(4)nm,b=1.4834(6)nm,c=1.6625(6)nm,α=81.896(7)°,β=76.980(8)°,γ=81.120(6)°,V=2.872(2)nm^3,Z=2,D~c=1.388g·cm^-^3。晶体的各部分间以氢键连接成网状超分子体系。  相似文献   

3.
通过使用四臂八齿Schiff配体(H4L)与六水合硝酸钴反应,成功合成了Co(Ⅱ)席夫碱配合物C26H26N3O3Co.3H2O,并使用元素分析、IR光谱及单晶X射线衍射等方法对配合物进行了表征.结构分析表明,配合物中的配体通过3个分枝上的N和O原子与金属离子配位,形成扭曲的八面体几何构型,配体上未参与配位的分枝发生了水解,氨基发生了质子化,且配合物通过分子间氢键的弱相互作用沿晶体学a轴方向排列成1D链状结构.  相似文献   

4.
以4-氨基苯甲酸和1,10-菲啰啉(phen)与高氯酸铁或硝酸镉反应,得到了两个邻菲啰啉的配合物:[Fe(phen)3]·2Cl O4·2CH2OH(1)和[Cd(phen)2(NO3)2](2)。并利用元素分析、红外光谱和X射线单晶衍射分析进行了表征。晶体结构分析表明,配合物(1)和(2)晶体属单斜晶系,C2/c空间群,其晶胞参数分别为:(1)a=35.708(3),b=15.903(2),c=12.204(1),β=102.504(6),V=6766(1)3,Z=8。(2)a=11.6887(6),b=15.2569(8),c=13.4630(10),β=105.9650(10),V=2310.5(2)3,Z=4。配合物(1)中phen上的氢原子与来自高氯酸根和乙二醇的氧原子形成氢键,并且相邻phen的吡啶环之间形成π~π堆积,从而使整个晶体扩展为三维网状超分子结构;配合物(2)中phen上氢原子与硝酸根的氧原子之间通过氢键使整个晶体扩展为三维网状超分子结构。  相似文献   

5.
在微波辐射下, 由苯氧乙酰肼出发, 合成了一系列三唑类衍生物, 利用单晶X射线衍射法测定了化合物5f的单晶结构. 化合物5f通过分子间氢键及范德华力形成了三维网状结构的超分子. 这些化合物对植物根的生长具有比较明显的促进活性.  相似文献   

6.
一个多世纪以来,己有大量有关席夫碱方面的文献报道.许多Schiff碱金属配合物因具有良好的抗肿瘤、抗病毒、杀菌抑霉等多种生物活性而得到了广泛应用[1-3];其特殊的催化行为以及在酶模拟方面的功效引起了化学家的普遍重视[4,5].席夫碱中,β一二酮类化合物是一类良好的金属螯合剂,因为它能够为金属提供两个键合点,形成稳定的六元螯合环,其与稀土离子形成的配合物具有稳定的化学性质和优异的发光性能,因而具有广泛的应用前景[6].  相似文献   

7.
对二甲氨基苯甲醛和苯基氨基硫脲缩合反应生成对二甲氨基苯甲醛缩氨基苯硫脲{1-[4-(dimethylamino)ben- zylidene]-4-phenylthiosemicarbazide}, 并从溶液中析出手性晶体. 元素分析、红外光谱、紫外光谱、核磁谱、质谱和X射线衍射测定其组成和结构. 晶体属正交晶系, P212121空间群, a=0.77038(14) nm, b=1.1428(2) nm, c=1.6726(3) nm, V=1.4726(5) nm3, Z=4, Dc=1.346 g/cm3, F(000)=632, μ=0.219 mm-1, 可观测点精修最终偏离因子: R=0.0407, wR=0.1157. 化合物的晶体结构和固态圆二色谱表明化合物在结晶过程中发生单一对映体的手性堆积.  相似文献   

8.
以乙酰丙酮和1R,2R-环己二胺进行缩合得到N,N′-双(乙酰丙酮)-1R,2R-环己二胺的Schiff碱配体L,再将配体L与La(NO3)3·6H2O进行配位反应,得到配合物[LaL3(NO3)3·H2O]n,并用元素分析,FT-IR和X-射线单晶衍射进行了表征.结果表明,配合物属于四方晶系,空间群P43212.晶体学参数:a=1.45779(3)nm,b=1.45779(3)nm,c=3.67061(12)nm,α=β=γ=90°,Z=8.  相似文献   

9.
A novel methyltrioxorhenium(Ⅶ) (MTO) complex was synthesized by the reaction of MTO with Schiff-base ligand obtained by the condensation of 2-pyridinecarboxaldehyde with 4-bromoaniline in methanol. The complex was characterized by NMR, IR, MS, elemental analysis and X-ray diffraction single crystal structure analysis. The results showed that the crystal belongs to monoclinic, space group P21/n with a=0.965 70(19) nm, b=1.410 6(3) nm, c=1.080 4(2) nm, β=109.20(3)°, V=1.390 0(5) nm3, Mr=510.36, Z=4, Dc=2.439 g·cm-3, F(000)=952 and final R1=0.034 4, wR2=0.076 1. The crystal structure indicates that the Re(Ⅶ) atom is coordinated with both nitrogen atoms from the Schiff-base. CCDC: 740159.  相似文献   

10.
利用邻羧基苯甲醛分别与1,3-丙二胺和乙二胺进行缩合得到邻羧基苯甲醛缩1,3-丙二胺双席夫碱(L1)和邻羧基苯甲醛缩乙二胺双席夫碱(L2)。以L1和L2为配体,分别与一水合乙酸铜在无水甲醇中通过溶剂热反应得到2个铜(Ⅱ)配合物[Cu(L1)(CH_3OH)](1)和[Cu_2(L)_2]·2H_2O·CH_3OH (2),其中邻苯二甲酸单甲酯缩乙二胺双席夫碱(L)为配体L2与甲醇发生加成反应形成的新配体。通过X射线单晶衍射法、红外光谱、元素分析、紫外光谱、荧光光谱、热重分析等测试手段对其进行结构表征与性质研究。单晶结构分析表明:L2为邻羧基苯甲醛缩乙二胺双席夫碱配体,属单斜晶系,I2/a空间群。配合物1属正交晶系,Pbca空间群,Cu(Ⅱ)与一个双席夫碱L1配体和一个甲醇分子配位,形成五配位的四方锥[CuO3N2]构型。配合物2属三斜晶系,P1空间群,Cu(Ⅱ)与配体L的2个氮原子和3个氧原子配位,形成五配位的扭曲三角双锥[CuO_3N_2]构型,并通过羧基氧原子桥连形成双核铜结构。  相似文献   

11.
Novel 1,3-distal p-tert-butylcalix[4]arene Schiff bases were efficiently synthesized in three steps. At first p-tert-butylcalix[4]arene was reacted with N-2-hydroxyethylphthalimide catalyzed by TPP/DEAD or alkylated with ω-haloalkylphthalimide in the system of K2CO3/KI/CH3COCH3 to give 1,3-distal diphthalimidoalkyl calixarenes, which were in turn hydrazinolyzed to give diaminoalkyl calixarenes. Then with the aid of the condensation of active calixarene amines with salicylaldehyde, 2-hydroxy-1-naphthaldehyde or pyridine-2-carboxaldehyde, a series of 1,3-distal calixarene Schiff bases was prepared in satisfied yields. The single crystal structures and complexing properties of these Schiff bases for transition metal ions were studied.  相似文献   

12.
<正>Two new Cu(II) complexes have been synthesized with two different bidentate N_2O_2 donor Schiff base ligands HL_1 (2-((E)-(4-chlorophenylimino)methyl)-6-bromo-4-chlorophenol) and HL_2 (2-((E)-(2-chlorophenylimino)methyl)-6-bromo-4-chlorophenol), respectively. Both complexes 1 and 2 have been characterized by elemental analysis and single-crystal X-ray diffraction studies. Structural studies reveal that in both complexes the metal centers are four-coordinated with N_2O_2 donor set of Schiff base ligands. Complex 1 belongs to the tetragonal system, space group P4(3)2(1)2 with a = 10.2379(2), b = 10.2379(2), c = 24.9623(90) , V = 2616.41(12) ~3, Z = 4, D_c = 1.908 g/cm~3, μ(MoKα) = 4.3327 mm~(-1), F(000) = 1468, S = 0.999, the final R = 0.0345 and wR = 0.0835 for 3506 unique reflections (R_(int) = 0.0428) with 3249 observed ones (I > 2σ(I)). Complex 2 is of monoclinic system, space group P21/c with a = 11.064(3), b = 9.437(2), c = 13.277(4), β = 108.997(3)°, V = 1310.8(6) ~3 , Z = 2, D_c = 1.904 g/cm~3, μ(MoKα) = 4.319 mm~(-1), F(000) = 734, S = 0.997, the final R = 0.0282 and wR = 0.0619 for 3491 unique reflections (R_(int) = 0.0428) with 2777 observed ones (I > 2σ(I)). The units of the complex are linked via weak interactions, such as C-H…Br hydrogen bonds together with Cl…Cl and Cu…Cl interactions, leading to the formation of one-dimensional chain and two-dimensional network and stabilizing the crystal structure.  相似文献   

13.
Three new nickel(II) complexes constructed with N‐(2‐hydroxybenzyl)‐β‐alanine (H2L), namely [NiL(phen)H2O]·H2O ( 1 ) (phen = 1.10‐phenanthroline), [Ni4L4(H2O)4]·5H2O ( 2 ) and K[Ni4L4(NCS)(H2O)5]·5.42H2O ( 3 ) have been synthesized and characterized by single‐crystal X‐ray diffraction analysis. Complex 1 exhibits a discrete structure, and the structures are bound together through hydrogen bonding to a one‐dimensional chain in ladder‐like fashion. Complexes 2 and 3 contain similar [Ni42‐O)6] cores with “zig‐zig” arrangement. In complex 3 , the tetranuclear nickel units [Ni4L4(H2O)4] and [Ni4L4(NCS)(H2O)] are alternately bridged by potassium atoms to a one‐dimensional chain. The neighboring chains are further linked up by {K2O2} units to a two‐dimensional layer structure. Moreover, the IR, XRD, TGA and the temperature‐dependent magnetic susceptibility for 2 and 3 have also been studied.  相似文献   

14.
Four Schiff base complexes, [Cu2(L1)2(μ‐NCS)2] ( 1 ), [Cu2(L2)2(μ‐N3)2] ( 2 ), Cu[Cu(CH3COO)(L3)]2 ( 3 ), and [Zn{Zn(C3H4N2)(L3)}2(NO3)](NO3) ( 4 ) (where L1 = 2‐[(pyridin‐2‐ylmethylimino)methyl]phenol, L2 = 1‐[(pyridin‐2‐ylmethylimino)methyl]naphthalen‐2‐ol, and L3 = bis(salicylidene)‐1, 3‐propanediamine), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar di‐nuclear complexes, which are located at crystallographic inversion centers (with the center of the central Cu2N2 ring). In 1 , each copper atom has a slightly distorted square pyramidal configuration, coordinated by two nitrogen atoms and one oxygen atom from L1 and another two terminal nitrogen atoms from two bridging thiocyanate anions. The Cu···Cu separation is 3.466(3) Å. The structure of 2 is similar to that of 1 , with Cu···Cu separation of 3.368(2) Å. Both 3 and 4 are linear tri‐nuclear complexes. In 3 , the central Cu2+ ion is located on an inversion centre and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands (L3) in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal Cu2+ ions is irregular‐square pyramidal, with two O and two N atoms of L3 in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal Cu2+ ions are mutually trans. The Cu···Cu separation is 3.009(3) Å. In 4 , the coordination configuration of the central and the terminal zinc atoms are similar to that of the 3 , with Zn···Zn separation of 3.153(4) Å. The three Schiff bases and the corresponding three copper complexes exhibit good antibacterial properties, while the zinc complex 4 has nearly no.  相似文献   

15.
Two new zinc(II) complexes, [Zn2L2Cl4]·2[ZnL(CH3OH)Cl2] 1 and [ZnL2(NO3)2] 2, were synthesized by reacting ZnX2·nH2O (X = Cl-, NO3-) and a Schiff base ligand 2-[(4-me- thylphenylimino)methyl]-6-methoxyphenol (C15H15NO2, L) which was obtained by the condensation of o-vanillin (2-hydroxy-3-methoxybenzaldehyde) with p-toluidine. Both 1 and 2 were characterized by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, 1H-NMR spectra and thermogravimetric analysis. The Schiff base ligand and its zinc(II) complexes have been tested in vitro to evaluate their antibacterial activity against bacteria, viz., Escherichia Coli, Staphylococcus aureus and Bacillus Subtilis. The results show that these complexes have higher activity than the corresponding free Schiff base ligand against the same bacteria.  相似文献   

16.
A novel dinuclear nickel(II) complex Ni2(NO3)4(APTY)4 (1) (APTY?=?1,5-dimethyl-2-phenyl-4-{[(1E)-pyridine-4-ylmethylene]amino}-1,2-dihydro-3H-pyrazol-3-one), was synthesized by solvothermal reaction of Ni(NO3)2?·?6H2O with APTY in methanol at 353?K. The structure consists of centrosymmetric dimers resulting from octahedrally coordinated Ni atoms bridged by APTY ligands. Weak intermolecular interactions (C–H?···?N, C–H?···?O hydrogen bonding, C–H?···?π and π–π stacking interactions) are responsible for a supramolecular assembly of molecules in the lattice. Magnetic measurements over 1.8–300?K show weak antiferromagnetic coupling between Ni(II) ions with J?=?2.969?cm?1, g?=?2.280, θ?=??5.903.  相似文献   

17.
Two novel linear trinuclear Schiff base complexes, [Ni{Ni(C17H14Br2N2O2)(NO3)(H2O)}2] · 2MeOH · 2H2O ( 1 ), and [Cd{Ni(C25H20N2O2)(CH3COO)}2] ( 2 ), were synthesized and characterized by elemental analyses, infrared spectroscopy, and X‐ray single crystal determinations. There are three bridges across the Ni‐M atom pairs (M is Ni for 1 , and Cd for 2 ) in each complex, involving two phenolate O atoms of a Schiff base ligand (N,N′‐bis(5‐bromosalicylidene)‐1,3‐propanediaminate (BSPD) for 1 and N,N′‐bis(2‐hydroxynaphthylmethenylimino)‐1,3‐propanediaminate (HNPD) for 2 ), and an O‐N‐O moiety of a μ‐nitrato group for 1 or an O‐C‐O moiety of a μ‐acetato group for 2 . In each of the complexes, the central M2+ is located on an inversion center and has an octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging nitrate or acetate group in the axial positions. The coordination around the terminal Ni2+ ions is also octahedral for 1 , but square pyramidal for 2 . The nitrate or acetate bridges linking the central and terminal metal ions are mutually trans. The Ni···M distances are 3.006(2) Å in 1 , and 3.175(2) Å in 2 .  相似文献   

18.
<正>The regioselective syntheses of novel p-tert-butylcalix[4]arenes with functional aldehyde and dithiocar-bazate Schiff base groups were carried out.p-tert-Butylcalix[4]arene was alkylated with o-,H-(ω-chloroalkoxy)-benzaldehydes in the system of K_2CO_3/KI/CH_3CN to give calixarene 1,3-dialdehydes.Then the condensation reactions of active calixarene aldehydes with S-methyl and S-benzyldithiocarbazate,calixarene sulfur-containing Schiff bases were efficiently obtained in satisfied yields.The single crystal analysis of the four representative products shows that calixarene aldehydes and Schiff bases exist in cone conformation and there are interesting intermolecular hydrogen-bands andπ…πinteraction in the crystals.  相似文献   

19.
Four Schiff base complexes, [Zn2L2(NCS)2] ( 1 ), [Cd2L2(NCS)2]n ( 2 ), [Zn4L2(N3)2Cl4(OH2)(CH3OH)] ( 3 ), and [Cu4L2(N3)2Cl4(OH2)(CH3OH)] ( 4 ) (where L = 2‐[(2‐dimethylaminoethylimino)methyl]phenol), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar polynuclear complexes. In 1 , each Zn atom has a slightly distorted square‐pyramidal coordination configuration. In the basal plane, the Zn atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The apical position is occupied by one terminal N atom of a coordinated thiocyanate anion. The Zn···Zn separation is 3.179(3) Å. While in 2 , the Cd1 atom is six‐coordinated in an octahedral coordination. In the equatorial plane, the Cd1 atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The axial positions are occupied by the terminal N and S atoms from two bridging thiocyanate anions. The coordination of Cd2 atom in 2 is similar to those of the zinc atoms in 1 . The Cd···Cd separation is 3.425(2) Å. Both 3 and 4 are novel tetra‐nuclear complexes. Each metal atom in the complexes has a slightly distorted square‐pyramidal coordination. The arrangements of the terminal metal atoms are similar, involving one O and two N atoms of one L ligand and one bridging Cl atom defining the basal plane, and one O atom of a coordinated water molecule or MeOH molecule occupying the apical position. The coordinations of the central metal atoms are also similar. The basal plane of each metal atom involves one O atom of one L ligand, one terminal Cl atom, and two terminal N atoms from two bridging azide groups. The apical position is occupied by a bridging Cl atom which also acts as a basal donor atom of the terminal metal atom. The Schiff base ligand and the four complexes showed high selectivity and antibacterial activities against most of the bacteria.  相似文献   

20.
LI  Liang  GU  Weiwei  YAN  Chaoguo 《中国化学》2009,27(10):1975-1980
Four p‐tert‐butylcalix[4]arene derivatives with different Schiff base groups at the lower rim were efficiently prepared in three steps. p‐tert‐Butylcalix[4]arene was firstly O‐peralkylated with ω‐haloalkylphthalimide in the system of NaH/DMF to give calixarene tetraalkylphthalimides, which were in turn hydrazinolyzed to give tetraaminoalkylcalixarenes. Then by condensation of the latter with salicylaldehyde and 2‐hydroxy‐1‐naphthaldehyde, a series of calixarene Schiff bases were obtained in satisfying yields. The complexing properties of these Schiff bases for transition metal ions were investigated with UV spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号