首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have successfully synthesized Ce based oxypnictide superconductors with fluorine doping (CeO1?xFxFeAs) by a two step solid state reaction method. Detailed XRD and EDX confirm the crystal structure and chemical compositions. We observe that an extremely high Hc2(0) of 94 T can be achieved in the x = 0.1 composition. This increase in Hc2(0) is accompanied by a decrease in transition temperature (38.4 K in x = 0.1 composition) from 42.5 K for the x = 0.2 phase. The in-plane Ginzburg–Landau coherence length is estimated to be ~27 Å at x = 0.2 suggesting a moderate anisotropy in this class of superconductors. The Seebeck coefficient confirms the majority carrier to be electrons and strong dominance of electron–electron correlations in this multiband superconductor.  相似文献   

2.
A series of SmFe1?xZnxAsO0.8F0.2 samples with x = 0, 0.05, 0.1, 0.2 and 0.4 have been successfully synthesized using a solid state method. The lattice parameters are found to increase with increasing Zn doping content. The superconductivity has been definitely suppressed by Zn doping at Fe site with the transition temperature Tc being reduced from 52.5 K to 23.3 K for the sample of x = 0.05, and to 18.2 K for the sample of x = 0.1. For the samples with x > 0.1, the superconducting transition vanishes, and, at the meantime, the spin-density-wave anomaly recovers at 140 K. The metal to semiconductor transition is also observed in the SmFe1?xZnxAsO0.8F0.2 system. The behavior of SmFe1?xZnxAsO0.8F0.2 is very different from that of REFeAsO (RE = rare earth metal), which reveals a very strong electron correlation in SmFe1?xZnxAsO0.8F0.2.  相似文献   

3.
The effect of yttrium substitution at the lanthanum site on the superconducting properties of La1?xYxO0.9F0.1FeAs (‘x = 0, 0.10, 0.20, 0.30, 0.50 and 0.60) oxypnictides has been studied. Powder X-ray diffraction studies confirm single phases till x = 0.1 beyond which minor amount of Y2O3 is observed. The temperature dependence of resistivity measurements confirm the superconducting transition temperature (Tc) of 34.8 (±0.05) K and corresponding Meissner transition at 34.3 K in the ‘x = 0.3 composition which is higher than that reported for the parent phase (LaO0.9F0.1FeAs (Tc = 28 K)). Further increase in the concentration of yttrium leads to broadening and suppression of the superconducting transition. The value of Hc2 at zero temperature is estimated to be about 60.5 T. The Seebeck coefficient (S) shows a negative sign indicating that the major contribution to the conductivity is by electrons. The Hall coefficient (RH) also remains negative throughout the temperature range supporting the thermopower results. The lattice parameters (a and c) decreases and the charge-carrier density increases with yttrium doping.  相似文献   

4.
We have studied the effect of negative chemical pressure in the RuGd1.5(Ce0.5?xPrx)Sr2Cu2O10?δ with Pr content of 0.0 ? x ? 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ? x ? 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr3+,4+ and Ce4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the antiferromagnetic and ferromagnetic transition temperatures, which is probably due to the presence of a spin glass region. There exist two magnetic transition temperatures for 0.0 ? x ? 0.2 which respectively change from TM = 155 K to 144 K and from Tirr = 115 K to 70 K. The magnetization versus applied magnetic field isotherms at 77 K and 300 K show that the remanent magnetization and coercivity are lower for samples with higher Pr content.  相似文献   

5.
Superconducting ceramics of Bi1.6Pb0.4Sr2Ca2Cu3OyFx (x = 0–0.6) are prepared in air by conventional solid state reaction and characterized. The study shows that the melting point of the samples decreases as fluorine content increases. As a consequence, the grain size increases with the doping level and for x = 0.6, the sample is completely deformed and presents a concave shape making impossible the measurements on it. The Vickers microhardness reaches its maximum for x = 0.2. The analysis of the X-ray diffraction results reveals that all the samples are composed of only Bi(Pb)-2212 and Bi(Pb)-2223 phases. The highest proportion of the high Tc phase (Bi(Pb)-2223) is also observed for x = 0.2 and is about 67.32%. The refinement of cell parameters is done by considering the structural modulation. The results show that the doping leads to a reduction of cell volume as well as the a axis component of modulation. From resistivity versus temperature measurements, it is shown that the doped phases exhibit higher onset critical transition temperatures than the undoped one. The residual resistivity increases with fluorine content suggesting that the doping introduces structural defects and disorder into the samples. The obtained critical current density at 77 K under zero magnetic field also increases with fluorine doping.  相似文献   

6.
We review neutron scattering investigations of the crystal structures, magnetic structures, and spin dynamics of the iron-based RFe(As, P)(O, F) (R = La, Ce, Pr, Nd), (Ba,Sr,Ca)Fe2As2, and Fe1+x(Te–Se) systems. On cooling from room temperature all the undoped materials exhibit universal behavior, where a tetragonal-to-orthorhombic/monoclinic structural transition occurs, below which the systems become antiferromagnets. For the first two classes of materials the magnetic structure within the ab plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a very energetic spin wave bandwidth ~0.2 eV. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity, with superconducting transition temperatures up to ≈55 K. Magnetic correlations are observed in the superconducting regime, with a magnetic resonance that follows the superconducting order parameter just like the cuprates. The rare earth moments order antiferromagnetically at low T like ‘conventional’ magnetic superconductors, while the Ce crystal field linewidths are affected when superconductivity sets in. The application of pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a ‘collapsed’ non-magnetic tetragonal system. Tetragonal Fe1+xTe transforms to a low T monoclinic structure at small x that changes to orthorhombic at larger x, which is accompanied by a crossover from commensurate to incommensurate magnetic order. Se doping suppresses the magnetic order, while incommensurate magnetic correlations are observed in the superconducting regime.  相似文献   

7.
Isoelectronic Tellurium (Te) substitution for Selenium (Se) in the tetragonal phase of FeSe (β-FeSe) increases the superconducting transition temperature (Tc) by applying a negative pressure on the lattice. However, the normal state resistivity increases and shows semi-metallic behavior for samples with higher Te concentration. With increasing Te concentration, the Tc increases and reaches a maximum for FeSe0.5Te0.5 and then decreases with further increase of Te. We have investigated the effect of Cobalt (Co) and Nickel (Ni) doping in FeSe0.5Te0.5 in the nominal composition range Fe1?xTMxSe0.5Te0.5 (TM = Co (x = 0.05, 0.1, 0.15, 0.2) and Ni (x = 0.05, 0.1)). Both Co and Ni doping suppress Tc and drives the system to metal–insulator transition. The in-plane (‘a’) and out-of-plane (‘c’) lattice constants decrease with increasing dopant concentration.  相似文献   

8.
Trimetallic perovskite oxides, Sm(1 ? x)CexFeO3 ± λ (x = 0–0.05), were prepared by thermal decomposition of amorphous citrate precursors followed by calcinations. The material properties of the substituted perovskites were characterized by X-ray diffraction (XRD), X-ray florescence spectroscopy (XRF), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The doped materials exhibited a single perovskite phase in air up to 1350 °C and have specific surface areas in the range of 2.696–8.665 m2/g. In reducing atmosphere (5%v/vH2/N2), the unsubstituted perovskite (x = 0) decomposed into two phases while the ceria stabilized materials (x = 0.01, x = 0.03, x = 0.05) remained in a single phase as revealed by XRD analysis. Their conductivities were measured by the four point probe method in air and in dilute hydrogen (5%v/vH2/N2) separately. The ceria substituted materials show increased stability versus reduction and phase separation for a wide temperature range (up to 1000 °C). Although undoped SmFeO3 has higher conductivity under oxidizing conditions than ceria doped SmFeO3 due its p-type nature, the situation is reversed under reducing conditions. The ceria substituted perovskites (Sm(1 ? x)CexFeO3 ± λ, x = 0–0.05) showed higher conductivity in reducing than in oxidizing conditions, suggesting that ceria doping at the A-site has changed the SmFeO3 from p-type to n-type semi-conducting behavior.  相似文献   

9.
Lead-free (1?x)[K0.5Na0.5NbO3]?x[LiSbO3] (x=0, 0.04, 0.05 and 0.06)/(KNN-LS) ceramics were prepared by conventional solid-state reaction route (CSSR). For dense morphology pure KNN ceramic was sintered at 1120 °C and LS modified KNN ceramics were sintered at 1080 °C for 4 h, respectively. The structural study at room temperature (RT) revealed the transformation of pure orthorhombic to tetragonal structure with the increase in LS content in KNN-LS ceramics. Temperature dependent dielectric study confirmed the increase of diffuse phase transition nature with the increase in LS content in KNN-LS ceramics. The presence of orthorhombic to tetragonal (TO?T) polymorphic phase transition temperature (PPT) ~43 °C confirmed the presence of two ferroelectric (orthorhombic and tetragonal) phases in 0.95KNN-0.05LS ceramics at RT. 0.95KNN-0.05LS ceramics showed better ferroelectric and piezoelectric properties i.e., remnant polarization (Pr)~18.7 μC/cm2, coercive field (Ec)~11.8 kV/cm, piezoelectric coefficient (d33)~215 pC/N, coupling coefficient (kp)~0.415 and remnant strain ~0.07% were obtained.  相似文献   

10.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

11.
A series of superconducting cuprates with the nominal composition YBa2Cu3  xCdxO7  yand the effect of Cd substitution on Cu sites in this compound is presented. X-ray powder diffraction patterns for these cadmium cuprates with reduced diamagnetism indicate an orthorhombic unit cell like-perovskite structure for (0  x  0.15), while for higher Cd concentration, i.e.x = 1.0 the material is polyphasic. The observed superconducting transition temperature of the samples is nearly the same ([formula] K), except for (x = 1.0) whereTcdrops to 72 K and a transition from metallic to semiconducting behavior of the normal state of the resistivity is observed. Such a decrease inTcfor higher Cd concentration could be attributed to the presence of the green phase in this composition.  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2657-2660
The compounds Li(4−x)/3Mn2(1−x)/3CoxO2 (0 < x < 0.5) were prepared by the sol–gel technique. X-ray diffraction patterns of these compounds were identified as α-NaFeO2 type layered structure, though some super-structure lines, related to the ordered array of Li and transition metal ions in the transition metal layer, were observed. The magnetic susceptibility exhibited an antiferromagnetic transition around 40 K for x < 0.2, however the specimens with x > 0.3 had no magnetic transition. The magnetic percolation may explain these magnetic variations. The electrochemical performances were evaluated for the compound of x = 0.5, and it was seen that the electrochemical properties were sensitive to the potential window. Additionally, it was also found that the discharge capacity strongly depended on the preparation temperature; it took a maximum value at the preparation temperature of 900 °C. The discharge capacity is sensitive not only to the cation mixing degree but also to the particle size.  相似文献   

13.
In this paper, sulfur substitution and pressure effect on superconductivity of α-FeSe has been investigated in Fe(Se1 ? xSx)0.88 (x = 0.1, 0.2). For x = 0.1, the critical temperature Tc is slightly larger than that of non-substituted sample, in consistent with the pressure effect on the superconductivity of α-FeSe. However, with further increasing S content to x = 0.2, Tc decreases. Temperature dependent of specific heat showed that the structural transition seems to be suppressed. Tc for x = 0.2 can be further decreased by applying pressure of 5 kbar, in contrary to the pressure effect on α-FeSe. We suggest that, in addition to the suppression of structural transition, other factors like the increase of carrier concentration should be considered for understanding the pressure effect on the superconductivity of α-FeSe.  相似文献   

14.
A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1?xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection spectroscopy experiments performed on LaFeAsO1?xFx (La-1111) polycrystals with Tc  27 K and SmFeAsO0.8F0.2 (Sm-1111) polycrystals with Tc  53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias voltages, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder–Tinkham–Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1?xFx (Re = La, Sm): a small gap, Δ1, smaller than the BCS value (2Δ1/kBTc  2.2–3.2) and a much larger gap Δ2 which gives a ratio 2Δ2/kBTc  6.5–9.0. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc.The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive in the normal state up to T1  140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.  相似文献   

15.
Annealing effects of FeSe1?xTex (0.6  x  1) single crystals have been investigated from measurements of the powder X-ray diffraction and specific heat. Through the annealing, several peaks of powder X-ray diffraction have become sharp and a clean jump of the specific-heat at the superconducting (SC) transition temperature, Tc, has been observed for x = 0.6–0.9, indicating bulk superconductivity. For annealed single-crystals of x = 0.6–0.8, the SC condensation energy, U0, and the SC gap, Δ0, at 0 K have been estimated as ~1.8 J/mol and 2.3–2.5 meV, respectively. The value of 2Δ0/kBTc is 3.9–4.5, indicating a little strong-coupling superconductivity. Both the electronic specific-heat coefficient in the normal state, γn, and the residual electronic specific-heat coefficient in the SC state, γ0, have been found to show significant x dependence. The values of γn are much larger than those estimated from the band calculation.  相似文献   

16.
The effects of doping Al and Mn on the cohesive and thermophysical properties of MgB2 have been investigated using a Rigid Ion Model (RIM). The interatomic potential of this model includes contributions from the long-range Coulomb attraction and the short-range overlap repulsion and the van der Waals attraction. This model has been applied to describe the temperature dependence of the specific heat of MgB2, Mg1−xAlxB2 (x = 0.1–0.9) and Mg1−xMnxB2 (x = 0.01–0.04) in the temperature range 5 K  T  1000 K. The calculated results on cohesive energy (ϕ), Bulk modulus (BT), molecular force constant (f), Restrahalen frequency (ν0), Debye temperature (ΘD) and Gruneisen parameter (γ) are also reported for these materials. Our results on Bulk modulus, Restrahalen frequency and Debye temperature are closer to the available experimental data. The comparison between our calculated and available experimental results on the specific heat at constant volume for MgB2 and Mg1−xAlxB2 (x = 0.1–0.4), particularly, at lower temperatures has shown almost an excellent agreement. The trend of variation of the specific heat with temperature is more or less similar in pure and doped MgB2.  相似文献   

17.
We have prepared a series of bulk polycrystalline samples with the nominal compositions (YBa2Cu3O7)1?x(Nd0.7Sr0.3MnO3)x (x = 0–1) by a conventional solid-state reaction method using the larger difference in sintering temperature of the two constituent oxides and a well conceived sintering sequence. XRD patterns show that the samples are composites consisting of YBa2Cu3O7 and Nd0.7Sr0.3MnO3 particles with average grain size of ~65 nm. For x ? 0.55, with increasing x, the zero-resistance superconducting transition temperature, TC0, measured at zero magnetic field decreases and the normal state resistivity increases rapidly. The TC0 for the sample with x  0.48 is estimated to be 0 K. The MH hysteresis loops indicate the coexistence of ferromagnetism and superconductivity in the samples. The depression of TC0 can be attributed to the proximity effect between ferromagnetism and superconductivity.  相似文献   

18.
A novel red phosphor La2MgTiO6:xEu3+ was successfully synthesized by the conventional solid state method. Excited by ultraviolet (395 nm) and blue (465 nm) light, La2MgTiO6:xEu3+ exhibits intense red emission. Due to the lack of inversion symmetry at the doping sites, the dominant emission peak is from the transition 5D07F2. Non-radiative transitions were demonstrated to be from dipole–dipole interactions and the critical distance was estimated to be ~9.19 Å. When Eu3+ ions' concentration reaches 15%, the emission intensity is about three times higher than that of the conventional phosphor Y2O3:Eu3+. The Commission International de L'Eclairage chromaticity coordinate was calculated to be x=0.657 and y=0.343. All the results indicate that La2MgTiO6:xEu3+ has superior luminescence properties.  相似文献   

19.
The internal friction of partially Sr-substituted Pr(Ba1?xSrx)2Cu3O7?δ (x = 0, 0.05, 0.1, 0.2, 0.3, and 0.4) ceramics was measured by the vibrating-reed method from liquid nitrogen temperature to room temperature at kilohertz frequencies. The intensity of the internal friction peak, which appears around 250 K, decreases upon Sr doping. The result is explained in terms of a possible combining structural freezing transition of CuO5 square pyramids and oxygen atoms in CuOx chains. Another internal friction peak around 134 K was observed in tetragonal Pr(Ba0.6Sr0.4)2Cu3O7?δ which is temporarily explained by the hopping of holes in the CuO2 layers.  相似文献   

20.
Equal amount Pr and Ca double-doping Y1?2xPrxCaxBa2Cu3O7?δ with 0 ? x ? 0.14 have been investigated by X-ray diffraction, resistivity, and X-ray photoemission spectroscopy (XPS). The deviation of the linearly decreasing of Tc vs. x curve was observed when x < 0.10. The resistivity and the temperature coefficient of resistivity also exhibit abnormal behaviors around x = 0.10. It is revealed that the conductivity behavior of Y1?2xPrxCaxBa2Cu3O7?δ with low Pr content (x < 0.10) is different from that of the relative high Pr content (x > 0.10), which suggests a change of Pr valence with the Pr content. XPS measurement shows that the relative amount of Pr3+ and Pr4+ is closely related to the total Pr content x. The valence of Pr is close to +3 when x < 0.10 and increases towards +4 when x > 0.10, which implies a different mechanism for depression of superconductivity of Pr content x < 0.10 from that of Pr content x > 0.10 in Pr doping Y-123.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号