首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three trinuclear sandwich-type cyanide-bridged MIII–NiII complexes, {[Ni(cyclm)[Fe(bpb)(CN)2]2}·8H2O (1), {[Ni(cyclm)[Cr(bpb)(CN)2]2}·2H2O (2), and {[Ni(cyclm)[Co(bpb)(CN)2]2}·CH3OH·2H2O (3) (cyclm?=?1,4,8,11-tetraazacyclotetradecane), have been synthesized using K[M(bpb)(CN)2] (M?=?Fe, Cr, Co; bpb?=?1,2-bis(pyridine-2-carboxamido)benzenate) as building block and one Ni(II) compound containing a 14-membered macrocycle ring as assembling segment. All the complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray structure determination. Single X-ray diffraction analysis shows similar sandwich-like structures, in which the two cyanide-containing building blocks are monodentate through one of their two cyanides, coordinated face to face to the central Ni(II). Investigation of the magnetic properties of 1 and 2 reveals ferromagnetic magnetic coupling between the neighboring Fe(III)/Cr(III) and Ni(II) through the bridging cyanide. A best-fit to the magnetic susceptibilities of 1 and 2 based on the trinuclear M2Ni model leads to magnetic coupling constants J?=?5.47(1)?cm?1 for 1 and J?=?6.37(2)?cm?1 for 2.  相似文献   

2.
By employing trans-dicyano or pentacyanometalate as building block and using a bicompartimental Schiffbase based manganese(III) compound as assemble segment, two new cyanide-bridged heterometallic Fe(III)–Mn(III) complexes {[Mn(L)(H2O)][Febpb(CN)2]}·2CH3OH (1) and {[Mn(L)(H2O)]2··[Fe(CN)5NO]} (2) (bpb2– = 1,2-bis(pyridine-2-carboxamido)benzenate, L = N,N'-ethylene-bis(3-ethoxysalicylideneiminate) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis reveals binuclear FeMn and trinuclear FeMn2 structure, respectively, in which the cyanide precursor acts as mono- or bidentate ligand to connect the Mn(III) Schiff-base unit(s). Furthermore, these two complexes are self-complementary through coordinated aqua ligands from one complex and the free O4 compartments from the neighboring complex, giving dimeric and 1D single chain supramolecular structure. Investigation of the magnetic susceptibility of 1 reveals weak antiferromagnetic coupling between the adjacent Mn(III) ions. Based on the binuclear FeMn model, best fit of the magnetic susceptibilities of 1 leads to the magnetic coupling constants J =–1.37 cm–1 and zJ′ =–0.72 cm–1 (1).  相似文献   

3.
Using two trans-dicyanidechromium(III) precursors K[Cr(bpdmb)(CN)2] (bpdmb2? = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate), K[Cr(bpClb)-(CN)2] (bpClb2? = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate) and one Cu(II) complex of a 14-membered macrocycle as ancillary organic ligand as assembling segments, two one-dimensional cyanide-bridged CrIII–CuII complexes {{[Cu(cyclam)][Cr(bpdmb)(CN)2]}ClO4} n ·nCH3OH·nH2O (1) and {{[Cu(cyclam)][Cr(bpClb)(CN)2]}ClO4} n ·nCH3OH (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis shows that their similar one-dimensional cationic single-chain structures consist of alternating units of [Cu(cyclam)]2+ and [Cr(bpdmb)(CN)2]?/[Cr(bpClb)(CN)2]? with free ClO4 ? as balancing anions. Investigations of the temperature dependences of magnetic susceptibility and the field-dependent magnetization reveal that both complexes have overall ferromagnetic coupling between the neighboring Cr(III) and Cu(II) centers through the bridging cyanide groups.  相似文献   

4.
A new cyanide-bridged heterobimetallic Fe(III)–Mn(II) complex {[MnL][FebpdBrb]} [FebpdBrb]n· 2nH2O has been synthesized by using pyridinecarboxamide trans-dicyanideiron as the building block. The X-ray diffraction analysis has revealed the one-dimensional infinite structure of the complex consisting of the alternating [Mn(L)]2+ and [Fe(bpdBrb)(CN)2] units forming a cyanide-bridged cationic polymeric chain, with [Fe(bpdBrb)(CN)2] as the free anions. The antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) ions through the bridging cyanide group has been revealed. The magnetic coupling constant has been determined as of J =–3.17 cm–1.  相似文献   

5.
6.
Two Re(IV)–Cu(II) heterometallic complexes {(CuLα)[ReCl4(ox)]}n (where Lα = N-meso-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4), 1, and (CuLβ)[ReCl4(ox)] (Lβ = N-rac-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4N-rac-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4), 2, were synthesized. The [CuL2+] macrocyclic cation is coordinated from above and below by [ReCl4(ox)]2− units through the chloro-ligands and creates a chloro-bridged heterometallic ReIV–CuII one-dimensional zig-zag chain. Compound 2 can be viewed as a heterobimetallic dinuclear unit, in which the Re(IV)-Cu(II) centers are linked by an oxalato bridge. The magnetic behavior of 1 and 2 has been investigated over the temperature range 1.8–300 K. Compound 1 behaves like a ferrimagnetic {Re(IV)–Cu(II)} bimetallic, one-dimensional chain with intrachain antiferromagnetic coupling. Compound 2 shows a weak antiferromagnetic interaction within the [Re(IV)–Cu(II)] unit along with a strong single-ion anisotropy, D(Re) = −63 cm−1.  相似文献   

7.
8.
A series of carboxylate-bridged heteronuclear 3d–4f complexes have been prepared by reaction of REL3 (HL = CH2 = C(CH3)COOH) with Cu(NO3)2. A family of air-stable 2-D complexes [RECuL4(H2O)4] n L n (RE = La (1), Ce (2), Eu (3), and Gd (4)) have the same crystal system (monoclinic) and space group (P21/c). The chains which are made by the carboxylate-bridged alternating Cu(II)–RE(III) fragments spreading along the c-axis are linked through hydrogen bonds by uncoordinated carboxylates to form a 2-D network structure along the bc planes. Magnetic measurements showed that 1 and 2 have antiferromagnetic interaction between RE and Cu, but 4 exhibits ferromagnetic interaction. Eu ions show van Vleck behavior in 3.  相似文献   

9.
By using the macrocyclic oxamido-copper complex CuL (H2L = 2,3-dioxo-5,6:13,14-dibenzo-9,10-(O)cyclohexyl-1,4,8,11-tetraazacyclo-tetradeca-7,12-diene) as precursor, two new trinuclear complexes with the formulas [(CuL)2Mn(ClO4)2] (1) and [(CuL)2Co(ClO4)2] (2) have been synthesized and structurally characterized. H-bonds are found between the molecules, which link adjacent trinuclear units together to form a unique one-dimensional structure. The temperature dependence of the magnetic susceptibility for the complexes was analyzed by means of the Hamiltonian leading to J = −14.66 cm−1 and J = −22.9 cm−1 for 1 and 2, respectively. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A one-pot reactions of cobalt powder with iron(II) chloride in dimethylformamide (DMF; 1) or dimethyl sulfoxide (DMSO; 2) solutions of polydentate salicylaldimine Schiff base ligands (H(2)L(1), 1; H(4)L(2), 2) based on 2-aminobenzyl alcohol (1) or tris(hydroxymethyl)aminomethane (2), formed in situ, yielded two novel heterometallic complexes, [Co(III)(2)Fe(III)(2)(L(1))(6)]·4DMF (1) and [Co(III)(4)Fe(III)(4)(HL(2))(8)(DMSO)(2)]·18DMSO (2). Crystallographic investigations revealed that the molecular structure of 1 is based on a tetranuclear core, {Co(III)(2)Fe(III)(2)(μ-O)(6)}, with a chainlike metal arrangement, while the structure of 2 represents the first example of a heterometallic octanuclear core, {Co(III)(4)Fe(III)(4)(μ-O)(14)}, with a quite rare manner of metal organization, formed by two pairs of {CoFe(HL(2))(2)} and {CoFe(HL(2))(2)(DMSO)} moieties, which are joined by O bridges of the Schiff base ligands. Variable-temperature (1.8-300 K) magnetic susceptibility measurements showed a decrease of the μ(B) value at low temperature, indicative of antiferromagnetic coupling (J/hc = -32 cm(-1) in 1; J/hc = -20 cm(-1) in 2) between the Fe(III) magnetic centers in both compounds. For 2, three J constants between Fe(III) centers were assumed to be identical. High-frequency electron paramagnetic resonance spectra allowed one to find spin Hamiltonian parameters in the coupled-spin triplet and quintet states of 1 and estimate them in 2. The "outer" and "inner" Fe atoms in 2 appeared separately in the M?ssbauer spectra.  相似文献   

11.
12.
Three new cyano-bridged complexes 1 [Ni(tn)2Ni(CN)4] (tn?=?1,3-diaminopropane), 2 [CuII(dipn)NiII(CN)4], and 3 [Cu(dipn)]6[Co(CN)6]4?·?4H2O (dipn?=?dipropylenetriamine) have been assembled by the templates [Ni(CN)4]2? and [Co(CN)6]3?. 1 consists of a one-dimensional linear chain–Ni(tn)2–NC–Ni(CN)2–CN–Ni(tn)2? in which the Ni(II) centers are linked by two CN groups. One 1-D zigzag chain of 2 is formed with–Ni(2)–C–N–Cu(1)–N–C–linkages. A 2D structure of 3 is formed by an alternate array of [Co(CN)6]3? and [Co][Cu6] units. For 1, there is an overall weak antiferromagnetic interaction between Ni(II) ions through the–NC–Ni–CN–bridges of the diamagnetic [Ni(CN)4]2? anions. 2 exhibits a weak antiferromagnetic exchange interaction between copper(II) ions mediated by [Ni(CN)4]2? diamagnetic bridges. Complex 3 exhibits a weak ferromagnetic interaction between nearest CuII and CuII atoms through–NC–Co–CN–bridges.  相似文献   

13.
Two cyano-bridged copper(II)–copper(I) mixed-valence assemblies, Cu(EAM)2[Cu(CN)2]2 1 (EAM?=?ethanolamine) and Cu(DETA)[Cu(CN)2]2·0.5H2O 2 (DETA?=?diethylenetriamine), have been prepared and structurally and magnetically characterized. IR spectra indicate the presence of bridging cyano groups in both 1 and 2, confirmed by structure analyses; Cu(I)–CN–Cu(II), Cu(I)–CN–Cu(I) and Cu(I)–Cu(I) metal bond linkages are evident. In the lattice, a 3D network is formed by two [Cu(CN)2]?? units and one [Cu(EAM)2]2+unit for 1. Variable temperature magnetic susceptibilities, measured in the 5–300?K range, indicate weak antiferromagnetic exchange interactions in complex 1.  相似文献   

14.
Dinuclear non-heme iron clusters containing oxo, hydroxo, or carboxylato bridges are found in a number of enzymes involved in O(2) metabolism such as methane monooxygenase, ribonucleotide reductase, and fatty acid desaturases. Efforts to model structural and/or functional features of the protein-bound clusters have prompted the preparation and study of complexes that contain Fe(micro-O(H))(2)Fe cores. Here we report the structures and spectroscopic properties of a family of diiron complexes with the same tetradentate N4 ligand in one ligand topology, namely [(alpha-BPMCN)(2)Fe(II)(2)(micro-OH)(2)](CF(3)SO(3))(2) (1), [(alpha-BPMCN)(2)Fe(II)Fe(III)(micro-OH)(2)](CF(3)SO(3))(3) (2), and [(alpha-BPMCN)(2)Fe(III)(2)(micro-O)(micro-OH)](CF(3)SO(3))(3) (3) (BPMCN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane). Stepwise one-electron oxidations of 1 to 2 and then to 3 demonstrate the versatility of the Fe(micro-O(H))(2)Fe diamond core to support a number of oxidation states with little structural rearrangement. Insight into the electronic structure of 1, 2', and 3 has been obtained from a detailed M?ssbauer investigation (2' differs from 2 in having a different complement of counterions). Mixed-valence complex 2' is ferromagnetically coupled, with J = -15 +/- 5 cm(-)(1) (H = JS(1).S(2)). For the S = (9)/(2) ground multiplet we have determined the zero-field splitting parameter, D(9/2) = -1.5 +/- 0.1 cm(-)(1), and the hyperfine parameters of the ferric and ferrous sites. For T < 12 K, the S = (9)/(2) multiplet has uncommon relaxation behavior. Thus, M(S) = -(9)/(2) <--> M(S) = +(9)/(2) ground state transition is slow while deltaM(S) = +/-1 transitions between equally signed M(S) levels are fast on the time scale of M?ssbauer spectroscopy. Below 100 K, complex 2' is trapped in the Fe(1)(III)Fe(2)(II) ground state; above this temperature, it exhibits thermally assisted electron hopping into the state Fe(1)(II)Fe(2)(III). The temperature dependence of the isomer shifts was corrected for second-order Doppler shift, obtained from the study of diferrous 1. The resultant true shifts were analyzed in a two-state hopping model. The diferric complex 3 is antiferromagnetically coupled with J = 90 +/- 15 cm(-)(1), estimated from a variable-temperature M?ssbauer analysis.  相似文献   

15.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   

16.
Two heterometallic coordination complexes, {[Cu(aeop)Zn(H2O)3]2?·?3H2O} n (1) and [Cu(aeop)Ni(H2O)4]?·?4H2O (2) (H4aeop?=?N-(2-aminoterephthalic acid)-N′-(1,3-propanediamine)oxamidate), have been synthesized and characterized by elemental analyses, IR, UV spectroscopy, thermogravimetric analysis, and X-ray crystal diffraction. Complex 1 features a 1-D chain constructed from neutral tetranuclear units. Complex 2 is a neutral binuclear complex. Through intermolecular hydrogen-bonding interactions, 2 gives a 3-D network structure. The variable temperature magnetic susceptibility measurements (2–300?K) of 2 show a pronounced antiferromagnetic interaction between the copper(II) and nickel(II), and the exchange integral J is equal to ?42.7?cm?1.  相似文献   

17.
Synthesis, structure characterization, and magnetic properties of three novel cyano-bridged complexes {[MnII(bpy)(DMF)2]2[MoIV(CN)8]·1.5H2O} n (1), [CuII(L)]2[MoIV(CN)8]·6.75H2O (2), and [MnII(bpy)2]4[MoIV(CN)8]2·4MeOH·4H2O (3) (where DMF = N,N′-dimethylformamide; bpy = 2,2-bipyridine and L = 1,3,6,8,11,14-hexaazatricyclo[12.2.1.18,11]octadecane) have been studied. The X-ray single-crystal structure reveals that 1 is a cyanide-bridged 1D infinite chain with the alternating of MnII(bpy)(DMF)2 and MoIV(CN)8 moieties. The neighboring chains interact with each other by hydrogen bonding to form a sheet-like network, and the layers further extend to a 3D network due to the face-to-face π···π stack interactions. For 2, the MoIV center adopts a distorted square antiprism coordination environment, while the CuII center adopts a distorted square pyramidal geometry. The weak Mo–CN···Cu interactions between neighboring molecules lead to a 2D network structure of 2. For 3, basic structural unit is centrosymmetric and contains four MnII centers bridged by two octacyanomolybdate(IV). Here, their magnetic properties have also been studied. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Two Co(II) and Mn(II) coordination polymers, which have been synthesized under hydrothermal conditions, are isomorphous with magnetic Δ-chains containing trinuclear triangular [M(3)(μ(3)-OH)] clusters. The Δ-chains are bridged by isonicotinic spacers to generate a two-dimensional scalariform layer structure. Magnetic investigations indicate that Co(II) compound exhibits not only spin canting but also metamagnetic behaviors, while only spin-canted antiferromagnetic behaviors was observed in Mn(II) compound.  相似文献   

19.
The dinuclear (Fe(II), Gd(III)) complexes studied in this report derive from hexadentate Schiff base ligands abbreviated H(2)L(i)() (i = 1, 2, 3). H(2)L(1) = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2'-dimethyl-propane, H(2)L(2) = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane, and H(2)L(3) = N,N'-bis(3-methoxysalicylidene)-1,2-diaminoethane. The crystal and molecular structures of three complexes have been determined at 160 K. Depending on the solvent used in the preparation, L(1)Fe(CH(3)OH)Gd(NO(3))(3)(CH(3)OH)(2), 1, or L(1)Fe((CH(3))(2)CO)Gd(NO(3))(3), 1', is obtained from H(2)L(1). A similar complex, L(2)Fe((CH(3))(2)CO)Gd(NO(3))(3), 2, is obtained from H(2)L(2). Complex 1 crystallizes in the orthorhombic space group Pca2(1) (No. 29): a = 22.141(3) A, b = 9.4159(16) A, c = 15.2075(17) A, V = 3170.4(7) A(3), Z = 4. Complexes 1' and 2 crystallize in the monoclinic space group P2(1)/c (No. 14): 1', a = 9.6264(17) A, b = 19.662(3) A, c = 16.039(3) A, beta = 95.15(2) degrees, V = 3023.6(9) A(3), Z = 4; 2, a = 9.7821(13) A, b = 18.7725(17) A, c = 16.100(2) A, beta = 96.497(16) degrees, V = 2937.5(6) A(3), Z = 4. Complexes 1, 1', and 2 possess an Fe(O(phenoxo))(2-)Gd core. The mononuclear L(3)Fe complex could be prepared from H(2)L(3) but not the related dinuclear (Fe, Gd) species. M?ssbauer spectroscopy evidences that the iron center is in the +2 oxidation state for the six complexes. The experimental magnetic susceptibility and magnetization data of complexes 1, 1', and 2 indicate the occurrence of weak Fe(II)-Gd(III) ferromagnetic interactions. Single ion zero-field splitting of the iron(II) must be taken into account for satisfactorily fitting the data by exact calculation of the energy levels associated to the spin Hamiltonian through diagonalization of the full matrix for axial symmetry (1, J = 0.50 cm(-1), D = 2.06 cm(-1); 1', J = 0.41 cm(-1), D = 3.22 cm(-1); 2, J = 0.08 cm(-1), D = 4.43 cm(-1)).  相似文献   

20.
The IR, electronic and NMR spectra of K2[Co(CN)5py]·H2O and Na3[fe(CN)5py]·3H2O, as well as the Mössbauer spectrum of the latter complex, are reported and discussed. In particular it is argued that the wavenumbers and intensities of the i.r.-active CN stretching vibrations and the NMR chemical shifts of the m- and p-but not o-protons suggest greater metal to ligand back π-bonding in the Fe(II) complex than in the Co(III) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号