首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(10):1638-1643
Laser-induced breakdown spectroscopy (LIBS) is a useful tool for characterization of archaeological samples because it involves little or no sample preparation, and it allows on-site rapid and nondestructive analysis. In this study, ceramics from the archaeological site of Labitolosa (Huesca) were analyzed qualitatively and quantitatively. Furthermore, a protocol is described for the determination of iron in archaeological materials by interpolating calibration graphs and standard addition. Moreover, the potential of LIBS for direct quantitative analysis of iron in real archaeological materials was evaluated, and optimum analytical conditions were determined. The reproducibility of LIBS spectra from different archaeological samples was investigated as a function of the number of laser shots. The results were compared with those of a reference material.  相似文献   

2.
激光诱导击穿光谱(Laser-induced breakdown spectroscopy, LIBS)技术几乎不受聚变环境中的强磁场影响,是一种最有希望实现托卡马克装置中面向等离子体材料(Plasma facing materials, PFMs)原位在线诊断的技术,已被用于多个托卡马克PFMs壁诊断。然而,LIBS技术对PFMs表面元素的探测限、定量分析以及PFMs的服役状态判定依旧面临很大挑战。采用同轴飞秒-纳秒激光协同技术,建立了飞秒-纳秒双脉冲激光诱导击穿光谱(fs-ns-DP-LIBS)技术,通过高峰值功率、低激光能量的飞秒激光诱导等离子体,再用纳秒激光增强常规单脉冲LIBS技术信号发射强度,进而提升常规单脉冲LIBS的探测灵敏度,同时结合6种合金标准样品,采用fs-ns-DP-LIBS技术对样品中的主要元素进行了定量分析,并进一步结合机器学习方法对6种合金进行种类判别。结果显示:在纳秒单脉冲和飞秒单脉冲LIBS检测中,Ni、Fe和Mo在400~800 nm波段没有观察到明显特征峰,仅观察到Cr的特征峰;在飞秒-纳秒脉冲间2μs延时,NiⅠ498.02 nm、FeⅠ517....  相似文献   

3.
采用激光诱导击穿光谱法(LIBS)对焊丝样品中的硅、锰、磷、硫、铬及镍元素进行测定。采用扫描电子显微镜和激光共聚焦显微镜观察了样品经激光脉冲烧蚀后的形貌,并考察了各元素的谱线强度与激光脉冲个数之间的关系,从而确定了预剥蚀激光脉冲个数。通过分析标准样品建立了单个元素的谱线强度与其质量分数之间的标准曲线,相关系数在0.989~0.999之间。本方法对焊丝样品的分析结果与经典的电感耦合等离子体原子发射光谱法和高频红外硫碳分析方法的测定结果相吻合,其精密度稍差于经典的分析方法。  相似文献   

4.
Presently, online analysis in potassium fertilizers industry is performed by Natural Radioactivity Analyzers. Laser Distance Spectrometry (LDS) has tested, by laboratory scale, the possibility of Laser-Induced Breakdown Spectroscopy (LIBS) technique implementation for online fertilizers production control. The main advantage of the system comparing to the existing technique is the principal possibility to analyze all relevant elements, such as K, Na, Mg, and not only K40 isotope as done in natural radiation analytical systems. Good correlations between online LIBS results with chemical analysis data of K, Na and Mg impurities of samples from Russia, Belarus and Israel demonstrate that LIBS system is a perspective tool for online control of those elements in field conditions.  相似文献   

5.
Laser-induced breakdown spectroscopy (LIBS) was applied to the preliminary examination of Polish documents – passports and identity cards – for forensic purposes. Several security features of potentially high discrimination capability were selected at both the passports (Alphagram, serial number, the contour map of Europe, and emblem) and identity cards (kinegram, the date of birth, and emblem). Different elemental compositions were identified after comparing the spectra recorded from various measurement locations. It was possible to identify characteristic atomic emission from several elements (such as Ti, Ca, K, Fe, Cr, Mg, Na, La, Cd, Li, V, Al, Mn, Ni, and Cu) based on the type of document, issue date, and evaluated area. In the case of passports, the potentially good discriminators with unique elemental composition were identified, e.g., the serial number and the contour map of Europe printed with the use of intaglio printing technique. Identity cards with the cover of polycarbonate foil constitute a very difficult sample to analyze because of the foil’s influence on the laser ablation phenomenon. This study presents the potential of LIBS as an effective and useful technique to analyze Polish passports for forensic purposes. Its many advantages provide a good alternative to the analytical methods routinely used for the examination of these objects.  相似文献   

6.
The aim of this paper is offering a critical review of Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS), the approach of multi-elemental quantitative analysis of LIBS spectra, based on the measurement of line intensities and plasma properties (plasma electron density and temperature) and on the assumption of a Boltzmann population of excited levels, which does not require the use of calibration curves or matrix-matched standards. The first part of this review focuses on the applications of the CF-LIBS method. Quantitative results reported in the literature, obtained in the analysis of various materials and in a wide range of experimental conditions, are summarized, with a special emphasis on the departure from nominal composition values. The second part is a discussion of the simplifying assumptions which lie at the basis of the CF-LIBS algorithm (stoichiometric ablation and complete atomization, thermal equilibrium, homogeneous plasma, thin radiation, detection of all elements). The inspection of the literature suggests that the CF-LIBS method is more accurate in analyzing metallic alloys rather than dielectrics. However, the full exploitation of the method seems to be still far to come, especially for the lack of a complete characterization of the effects of experimental constraints. However, some general directions can be suggested to help the analyst in designing LIBS measurements in a way which is more suited for CF-LIBS analysis.  相似文献   

7.
Plasma Chemistry and Plasma Processing - Polarization-resolved laser-induced breakdown spectroscopy based on a temporal investigation of polarized Cu plasma emission is presented by a gated...  相似文献   

8.
In recent decades, numerous analytical techniques have been used for the analysis of archeological samples. Laser-induced breakdown spectroscopy (LIBS) is a promising technique due to its practically nondestructive nature and minimal sample preparation. In this work, LIBS was used for the qualitative and quantitative elemental analyses of pottery manufactured in ancient settlements of Rome. The qualitative study showed that the ceramics were composed of Fe, Ca, and Mg. For quantitative analysis, calibration curves of Fe, Ca, and Mg were constructed with reference samples of each element in a KBr matrix with zinc as an internal standard. The results obtained by LIBS were compared with values obtained by atomic absorption.  相似文献   

9.
杨春  贾云海  陈吉文  李冬玲  刘佳  张勇 《分析化学》2014,(11):1623-1628
激光诱导击穿光谱( LIBS)不仅可以对材料整体成分进行分析,还可进行微区及成分分布分析。本实验采用激光诱导击穿光谱对两牌号钢铁样品进行扫描分析,尝试对34CrNiMo6钢中的MnS夹杂物和重轨钢中的Si-Al-Ca-Mg复合夹杂物进行表征。结果表明,34CrNiMo6钢中元素信号的二维强度分布及元素通道合成后,个别位置Mn及S两元素的信号强度同时异常高,可确定试样中存在较多MnS夹杂物;重轨钢中元素的二维强度分布及元素通道合成后,个别位置Si、Ca、Mg及Al元素的信号同时异常高,可确定试样中存在Si-Al-Ca-Mg复合夹杂物。采用扫描电子显微镜/能谱法( SEM/EDS)对上述样品中夹杂物的对比分析结果表明,两种方法对夹杂物类型的判定结果一致。  相似文献   

10.
激光诱导击穿光谱(Laser-induced breakdown spectroscopy, LIBS)技术利用激光实现对分析样品的快速原位剥蚀和光谱激发,是一种具有广阔应用前景的分析手段,尤其是在现场、原位分析中优势明显,快速原位的分析特点符合未来分析仪器的发展方向.近年来基于该技术开展各类仪器研发的相关工作,引起广大研究者的极大关注.本文综述了激光诱导击穿光谱仪器中关键部件的组成及发展,从便携式、手持式及远程系统三个方面综述了各类现场应用仪器的研发进展,并对未来发展方向进行了展望.  相似文献   

11.
Laser-Induced Breakdown Spectroscopy (LIBS) experiments are performed on standard metallic samples, in air at atmospheric pressure, using a Nd:YAG laser at 1064 nm and a fiber located close to the plasma to collect its emission. This configuration is chosen because it is representative of many LIBS setups. The influence of several experimental parameters is studied in order to optimize the analytical performances: signal-to-background ratio (SBR), line intensity and repeatability. Temporal parameters of the detector are adjusted for each measurement to maximize the SBR. The signal is found to linearly depend on the pulse energy over our range of investigation. This behavior is related to the increase of the number of vaporized atoms when the pulse energy increases. Complementary measurements of plasma dimensions support our conclusions. We show the existence of an optimum fluence on the sample that gives the highest signal and the lowest relative standard deviation (RSD), and which does not depend on the pulse energy. Finally we demonstrate that ablation is much more efficient using a laser beam with a high numerical aperture, other experimental parameters being unchanged, because of a less pronounced laser shielding by the plasma. Analytical consequences of this result are discussed.  相似文献   

12.
Twelve archaeological copper objects from the burial site of “Fontino” cave, near Grosseto, (around 2500–2000 B.C.) were analysed using laser-induced breakdown spectroscopy. Qualitative results and a preliminary study of the samples’ composition are reported and used to make a quantitative estimate; based on these results, the samples were classified using principal components statistical analysis. The perspectives of using laser-induced breakdown spectroscopy for archaeometric analysis are also discussed.  相似文献   

13.
Laser-Induced Breakdown Spectroscopy has been employed to detect sodium chloride and metallic particles with sizes ranging from 40 nm up to 1 µm produced by two different particle generators. The Laser-Induced Breakdown Spectroscopy technique combined with a Scanning Mobility Particle Sizer was evaluated as a potential candidate for workplace surveillance in industries producing nanoparticle-based materials. Though research is still currently under way to secure nanoparticle production processes, the risk of accidental release is not to be neglected. Consequently, there is an urgent need for the manufacturers to have at their command a tool enabling leak detection in-situ and in real time so as to protect workers from potential exposure.In this context, experiments dedicated to laser-induced plasma particle interaction were performed. To begin with, spectral images of the laser-induced plasma vaporizing particles were recorded to visualize the spatio-temporal evolution of the atomized matter and to infer the best recording parameters for Laser-Induced Breakdown Spectroscopy analytical purposes, taking into account our experimental set-up specificity. Then, on this basis, time-resolved spectroscopic measurements were performed to make a first assumption of the Laser-Induced Breakdown Spectroscopy potentialities. Particle size dependency on the LIBS signal was examined. Repeatability and limits of detection were assessed and discussed. All the experiments carried out with low particle concentrations point out the high time delays corresponding to the Laser-Induced Breakdown Spectroscopy signal emergence. Plasma temperature temporal evolution was found to be a key parameter to explain this peculiarity inherent to laser/plasma/particle interaction.  相似文献   

14.
Laser-Induced Breakdown Spectroscopy (LIBS) was employed for on-line and real time process monitoring during nanoparticle production by laser pyrolysis. Laser pyrolysis has proved to be a reliable and versatile method for nanoparticle production. However, an on-line and real time monitoring system could greatly enhance the process optimization and accordingly improve its performances. For this purpose, experiments aiming at demonstrating the feasibility of an on-line monitoring system for silicon carbide nanoparticle production using the LIBS technique were carried out. Nanosecond laser pulses were focused into a cell through which part of the nanoparticle flux diverted from the production process was flowed for LIBS analysis purposes. The nanoparticles were vaporized within the laser-induced plasma created in argon used as background gas in the process. Temporally-resolved emission spectroscopy measurements were performed in order to monitor nanoparticle stoichiometry. Promising results were obtained and on-line Si/Cx stoichiometry was successfully observed. These results put forward the possibility of real time correction of the nanoparticle stoichiometry during the production process.  相似文献   

15.
16.
《Analytical letters》2012,45(10):1509-1517
Abstract

Laser-induced breakdown spectroscopy gave excellent results with respect to reproducibility, sensitivity, nondestructiveness, rapid elemental analisys, and depth-profile analisys. In this work, elements contained in pigments from pre-Hispanic ceramics of Cajamarquilla were identified. Also, some textile samples from the Uquira site, located in Asia Valley between Mala and Cañete (Perú), were analyzed. For this purpose, a Quantel Ultra CFR pulsed Nd/YAG laser was used.  相似文献   

17.
A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS capabilities to very long distances. The high-power densities achievable with these laser pulses can also induce self-guided filaments in the atmosphere which produce LIBS excitation of a sample. The first results obtained with remote filament-induced breakdown spectroscopy predict sample analysis at kilometer ranges.  相似文献   

18.
Laser-induced breakdown spectroscopy was used for the analysis of the Chinese traditional medicine, Ligusticum wallichii. The laser energy and delay time were optimized to obtain best spectral quality. The limits of detection for lead and copper were 15.7 and 6.3?µg?g?1, respectively. Multiple linear regression models between the laser-induced breakdown spectroscopy intensity and the mass fraction of lead and copper were constructed. Good agreement was observed between the actual concentrations and predicted values obtained by the models. These results demonstrate that the laser-induced breakdown spectroscopy coupled with multiple linear regression is suitable for the determination of heavy metals in Chinese traditional medicine.  相似文献   

19.
Results are reported on the application of double-pulse Laser-Induced Breakdown Spectroscopy (LIBS) for fast analysis of complex metallic alloys. The approach followed for the determination of the composition of the alloys is based on the time-integrated acquisition of LIBS spectra emitted by plasmas induced by collinear double-pulse laser excitation. The spectra are analysed using the Partial Least Squares method, which allows the determination of sample composition even in the presence of strong spectral interferences. The results shown indicate the possibility of measuring the composition of complex metallic alloys in very short times and using relatively cheap LIBS instrumentation.  相似文献   

20.
In the Laser-Induced Breakdown Spectroscopy (LIBS) technique, the existence of Local Thermodynamic Equilibrium (LTE) is the essential requisite for meaningful application of theoretical Boltzmann–Maxwell and Saha–Eggert expressions that relate fundamental plasma parameters and concentration of analyte species. The most popular criterion reported in the literature dealing with plasma diagnostics, and usually invoked as a proof of the existence of LTE in the plasma, is the McWhirter criterion [R.W.P. McWhirter, in: Eds. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques, Academic Press, New York, 1965, pp. 201–264]. However, as pointed out in several papers, this criterion is known to be a necessary but not a sufficient condition to insure LTE. The considerations reported here are meant to briefly review the theoretical analysis underlying the concept of thermodynamic equilibrium and the derivation of the McWhirter criterion, and to critically discuss its application to a transient and non-homogeneous plasma, like that created by a laser pulse on solid targets. Specific examples are given of theoretical expressions involving relaxation times and diffusion coefficients, as well as a discussion of different experimental approaches involving space and time-resolved measurements that could be used to complement a positive result of the calculation of the minimum electron number density required for LTE using the McWhirter formula. It is argued that these approaches will allow a more complete assessment of the existence of LTE and therefore permit a better quantitative result. It is suggested that the mere use of the McWhirter criterion to assess the existence of LTE in laser-induced plasmas should be discontinued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号