首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the first application of laser-induced breakdown spectroscopy technique (LIBS) to the determination of deuterium/hydrogen numeric ratio (β) in the headspace gases, essentially HD + H2, that are generated by the hydrolysis of NaBD4–NaBH4 mixtures (molar fraction of NaBD4, x = 50–100%) in acidic H2O media (0 < pH < 1). The LIBS measurement of β can be easily achieved with a coefficient of variation better than 5% (over four replicates). The value of β allowed the calculation of the molar fraction of NaBD4, xLIBS, with a coefficient of variation better than 2.5%. The comparison of x vs. xLIBS gives results that are in good agreement, within an average deviation of 3%, for x in the range of 50–100%. The best performances are obtained for β close to unit, which makes LIBS perfectly suited for the detection of H–D exchange taking place during aqueous hydrolysis of NaBD4 or NaBH4.  相似文献   

2.
We present our results from the laser induced breakdown spectroscopic studies of 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) investigated using nanosecond and femtosecond pulses. The presence of C, CN peaks in the spectra, signatures of high energy materials, was confirmed and persistence of emissions has been measured. Some of the Nitrogen peaks in fs LIBS spectra were found to be lower in magnitude (after normalization with N 868.60 nm peak) compared to the ns LIBS spectra. The presence of an additional CN peak in the fs spectra was identified for all samples. The ratio of CN peaks (388.28 nm, 387.08 nm, 386.16 nm) to C peak (247.82 nm), recorded with similar fluences, was discovered to be stronger in the fs case. Some of the possible mechanisms ensuing from our studies towards discrimination of such materials are outlined.  相似文献   

3.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

4.
Studies have been performed to characterize laser induced breakdown spectroscopy (LIBS) plasmas formed in Ar/H2 gas mixtures that are used for hydride generation (HG) LIBS measurements of arsenic (As), antimony (Sb) and selenium (Se) hydrides. The plasma electron density and plasma excitation temperature have been determined through hydrogen, argon and arsenic emission measurements. The electron density ranges from 4.5 × 1017 to 8.3 × 1015 cm?3 over time delays of 0.2 to 15 μs. The plasma temperatures range from 8800 to 7700 K for Ar and from 8800 to 6500 K for As in the HG LIBS plasmas. Evaluation of the plasma properties leads to the conclusion that partial local thermodynamic equilibrium conditions are present in the HG LIBS plasmas. Comparison measurements in LIBS plasmas formed in Ar gas only indicate that the temperatures are similar in both plasmas. However it is also observed that the electron density is higher in the Ar only plasmas and that the emission intensities of Ar are higher and decay more slowly in the Ar only plasmas. These differences are attributed to the presence of H2 which has a higher thermal conductivity and provides additional dissociation, excitation and ionization processes in the HG LIBS plasma environment. Based on the observed results, it is anticipated that changes to the HG conditions that change the amount of H2 in the plasma will have a significant effect on analyte emission in the HG LIBS plasmas that is independent of changes in the HG efficiency. The HG LIBS plasmas have been evaluated for measurements of elements hydrides using a constant set of HG LIBS plasma conditions. Linear responses are observed and limits of detection of 0.7, 0.2 and 0.6 mg/L are reported for As, Sb and Se, respectively.  相似文献   

5.
Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.  相似文献   

6.
The density and speed of sound of hexadecane have been measured with two instruments. Both instruments use the vibrating-tube method for measuring density. Ambient pressure (83 kPa) density and speed of sound were measured with a commercial instrument from T = (290.65 to 343.15) K. Adiabatic compressibilities are derived from the density and speed of sound data at ambient pressure. Compressed liquid density was measured in a second instrument and ranged from T = (310 to 470) K with pressures from (1 to 50) MPa. The overall relative expanded uncertainty of the compressed liquid density measurements is 0.10–0.13% (k = 2). The overall relative expanded uncertainty (k = 2.3) of the speed of sound measurements is 0.2% and that of the ambient pressure density measurements is approximately 0.04% (k = 2.3). The ambient pressure and compressed liquid density measurements are correlated within 0.1% with a modified Tait equation.  相似文献   

7.
Dissolution procedures were developed to control the number of surface layers removed, in an attempt to achieve depth resolved analysis by inductively coupled plasma-mass spectrometry (ICP-MS). NIST 612 glass was chosen because it is a homogeneous material with many elements at interesting concentrations, ~ 50 ppm. Varying dissolution time and HF concentration resulted in the reproducible removal of SiO2 layers as thin as 70 Å deep. Dissolved trace metals were determined after dilution by inductively coupled plasma-mass spectrometry (ICP-MS) with a magnetic sector instrument. The amount removed was determined from the concentration of a major element, Ca. With the exception of Zn, trace metal concentrations agreed reasonably well with their certified values for removal depths of 500, 300 and 150 Å. Zinc concentration was significantly high in all dissolutions indicating either a contamination problem or that Zn is removed at a faster rate than Ca. For the dissolutions that removed 70 Å of SiO2, Cr, Mn, Co, Sr, Cd, Ce, Dy, Er, Yb and U recovery results agreed with their certified values (~ 50 ppm); Ti, As, Mo, Ba, and Th could not be determined because net intensities were below 3σ of the blank; and measured concentrations for Cu, Pb and Zn were well above the certified values.  相似文献   

8.
Liquid chromatography–inductively coupled plasma-mass spectrometry (LC–ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g 1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion.  相似文献   

9.
《Polyhedron》2007,26(9-11):2273-2275
Nanoparticles of rubidium cobalt hexacyanoferrate were synthesized using the organic ligand poly(vinylpyrrolidone) (PVP). The particles, with composition Rb1.8Co4[Fe(CN)6]3.2 · nH2O determined from CHN combustion analysis and ICP-MS, have an average size of 10 nm ± 2 nm. Similar to bulk samples, the nanoparticles show evidence of ferrimagnetic ordering in DC magnetization below TC  15 K, although the transition is broadened due to the small particle size and its dispersion. Upon illumination with white light at 5 K, the field-cooled DC magnetization of these particles increased 40%.  相似文献   

10.
In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg 1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm 2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves).  相似文献   

11.
We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature TS  500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with TS. The size and brightness of expanding plumes increase at higher TS while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with TS. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to TS = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes.  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) in the single-pulse or orthogonal double-pulse configuration was performed for the measurement of the concentration of chlorine, which induces the occurrence of stress corrosion cracking (SCC), attached to stainless-steel (UNS S30403). The chlorine spectra were measured for samples sprayed with synthetic seawater with chlorine concentrations from 0.1 to 1.0 g/m2. The chlorine emission intensity decreased between chlorine concentrations of 0.4 and 1.0 g/m2 as determined in the single-pulse measurement. The chlorine concentration dependence of the chlorine emission intensity in the single-pulse configuration was unchanged even when the laser energy was set between 30 and 100 mJ. On the other hand, the chlorine emission intensity increased linearly versus chlorine concentration from 0.1 to 1.0 g/m2 with the orthogonal double-pulse configuration. The results suggest that LIBS is promising for the inspection of the environmental condition for SCC initiation, which can occur when the chlorine concentration is greater than or equal to 0.8 g/m2.  相似文献   

13.
Bromine and iodine determination was performed in carbon nanotubes (CNTs) by inductively coupled plasma mass spectrometry (ICP-MS) after sample preparation using pyrohydrolysis. Samples of CNTs (up to 500 mg) were mixed with 750 mg of V2O5 and heated at 950 °C during 12.5 min in a quartz tube under water vapor and air. The main operational conditions of pyrohydrolysis (carrier gas, absorbing solution, heating time, sample mass and use of V2O5) were evaluated. Accuracy was evaluated using certified reference materials (CRM) with similar matrix and also by comparison of results obtained after digestion of samples by microwave-induced combustion (MIC) and determination by ICP-MS. Agreement with CRM values was higher than 97% for Br and better than 96% in comparison with reference values (MIC/ICP-MS) of Br and I in CNTs samples. The limit of detection of the method for Br and I determination by ICP-MS was 0.05 and 0.004 μg g? 1, respectively. Using a relatively simple and low cost pyrohydrolysis apparatus up to four samples can be processed per hour. The pyrohydrolysis sample preparation procedure is easy to be performed and provide a clean solution for analysis by ICP-MS, which is very attractive for Br and I control in CNTs.  相似文献   

14.
The characteristics of infra red femtosecond laser-induced aerosols are studied for monazite (LREE, Th(PO4)) ablation and correlations are established with inductively coupled plasma-mass spectrometry (ICP-MS) signals. Critical parameters are tested within wide ranges of values in order to cover the usual laser ablation -ICP-MS analysis conditions: pulse energy (0.15 < E0 < 1 mJ/pulse), pulse width (60 < τ < 3000 fs), ablation time (t  10 min) and transport length (l  6.3 m). Transmission electron microscopy reveals that aerosols are made of agglomerates of ~ 10 nm particles and 20–300 nm phosphorus depleted condensed spherical particles. These structures are not affected by any laser ablation parameter. Particle counting is performed using electronic low pressure impaction. Small changes on particle size distribution are noticed. They may be induced either by a peak of ablation rate in the first 15 s at high fluence (larger particles) or the loss of small particles during transport. We found a positive correlation between I (ICP-MS mean signal intensity in cps) and N (particle density in cm? 3) when varying E0 and t, suggesting that N is controlled by the irradiance (P0 in W·cm? 2). Elemental ratio measurements show a steady state signal after the initial high ablation rate (mass load effect in the plasma torch) and before a late chemical fractionation, induced by poor extraction of bigger, early condensed spherical particles from the deepening crater. Such chemical fractionation effects remain within uncertainties, however. These effects can be limited by monitoring E0 to shorten the initial transient state and delay the attainment of an unfavorable crater aspect ratio. Most adopted settings are for the first time deduced from aerosol characteristics, for infra red femtosecond laser ablation. A short transport (l < 4.0 m) limits the agglomeration of particles by collision process along the tube. Short τ is preferred because of higher P0, yet no benefit is found on ICP-MS signal intensity under 200 fs. Under such pulse widths the increased particle production induces more agglomeration during transport, thereby resulting in higher mass load effects that reduce the ionization efficiency of the plasma torch. Thus, pulse energy must be set to get an optimal balance between the need for a high signal/background ratio and limitation of mass load effects in the plasma torch.  相似文献   

15.
Raman and infrared (IR) spectroscopy are complementary spectroscopic techniques. However, measurement of Raman and IR spectra are commonly carried out on separate instruments. A dispersive system that enables both Raman spectroscopy and NIR spectroscopy was designed, built, and tested. The prototype system measures spectral ranges of 2600–300 cm−1 and 752–987 nm for Raman and NIR channels, respectively. A wavelength accuracy better than 0.6 nm and spectral resolution better than 1 nm (14.4 cm−1 for Raman channel) could be achieved with our configuration. The linearity of spectral response was better than 99.8%. The intensity stability of the instrument was found to be 0.7% and 0.4% for Raman and NIR channels, respectively. The performance of the instrument was evaluated using binary aqueous solutions of ethanol and ovalbumin. It was found that ethanol concentrations (2–10%) could be predicted with a root mean squared error of prediction (RMSEP) of 0.45% using Raman peak height at 882.2 cm−1. Quantification of ovalbumin concentration (8–16 g/L) in aqueous solutions and in denatured states yielded RMSEP values of 1.05 g/L and 0.74 g/L, respectively. Using concentration as external perturbation in two-dimensional correlation spectroscopy (2DCOS), heterospectral correlation analysis revealed the relationship between NIR and Raman spectra.  相似文献   

16.
Laser-induced breakdown spectroscopy (LIBS) along with multivariate analysis was used to differentiate between the total carbon (C), inorganic C, and organic C in a set of 58 different soils from 5 soil orders. A 532 nm laser with 45 mJ of laser power was used to excite the 58 samples of soil and the emission of all the elements present in the soil samples was recorded in a single spectrum with a wide wavelength range of 200–800 nm. The results were compared to the laboratory standard technique, e.g., combustion on a LECO-CN analyzer, to determine the true values for total C, inorganic C, and organic C concentrations. Our objectives were: 1) to determine the characteristic spectra of soils containing different amounts of organic and inorganic C, and 2) to examine the viability of this technique for differentiating between soils that contain predominantly organic and/or inorganic C content for a range of diverse soils. Previous work has shown that LIBS is an accurate and reliable approach to measuring total carbon content of soils, but it remains uncertain whether inorganic and organic forms of carbon can be separated using this approach. Total C and inorganic C exhibited correlation with rock-forming elements such as Al, Si, Fe, Ti, Ca, and Sr, while organic C exhibited minor correlation with these elements and a major correlation with Mg. We calculated a figure of merit (Mg/Ca) based on our results to enable differentiation between inorganic versus organic C. We obtained the LIBS validation prediction for total, inorganic, and organic C to have a coefficient of regression, r2 = 0.91, 0.87, and 0.91 respectively. These examples demonstrate an advance in LIBS-based techniques to distinguish between organic and inorganic C using the full wavelength spectra.  相似文献   

17.
The use of a new HF-resistant tandem spray chamber arrangement consisting of a cyclonic spray chamber and a Scott-type spray chamber made from PFA and PEEK provides a straightforward approach for improving the performance of inductively coupled-mass spectrometry (ICP-MS). The characteristics of the tandem spray chamber were critically evaluated against a PEEK cyclonic and a PFA Scott-type spray chamber, respectively. Sensitivity across the entire mass range was increased by about three times compared to the conventional setup utilizing only one spray chamber. Precision of the results, especially at low signal intensities, improved by 160% and 31% compared to the cyclonic and Scott-type spray chamber, respectively. Using the tandem spray chamber, the oxide formation rate was lowered by about 50%. Signals as low as 30 counts could be determined under routine measurement conditions with a RSD of 2.4% thus allowing to precisely quantify small concentration differences at the ng l 1 concentration level. The excellent precision (0.02–0.07%) of 206Pb / 207Pb and 206Pb / 208Pb ratios determined in pore water samples was rather limited by the instrumental capabilities of the single collector ICP-MS instrument than by the performance of the tandem spray chamber.  相似文献   

18.
A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GC sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions.To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 μg · m 3. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.  相似文献   

19.
This study determined iodine value (IV) and free fatty acids (FFA) content of four different animal fat wastes and their blends using Fourier transform near-infrared spectroscopy (FT-NIR). Chemometric analysis by partial least squares (PLS) regression was used to correlate spectral data with IV and FFA reference values of the samples. The effects of four spectra pre-processing (first derivative (FD), second derivative (SD), multiplicative scatter correction (MSC) and vector normalization (VN)) methods were investigated to predict the reproducibility and robustness of the PLS-NIR model developed. A set of 70% of animal fat wastes and their blends were used for developing PLS calibration models for measuring IV and FFA content using the remaining 30% samples as an independent test set validation. The coefficient of determination (R2), the root mean square error estimation (RMSEE), and the residual prediction deviation (RPD) were used as indicators for the predictability of the PLS models. PLS-NIR models developed using first derivative and second derivative spectral preprocessing methods were the best for both IV and FFA content analysis (For IV, FD; R2 = 0.9870, RMSEE = 1.40 gI2/100 g, RPD = 8.76, SD; R2 = 0.9892, RMSEE = 1.28 gI2/100 g, RPD = 9.64 while For FFA, FD; R2 = 0.9991, RMSEE = 0.195%, RPD = 34.00, SD; R2 = 0.9993, RMSEE = 0.182%, RPD = 36.8). Overall, the results of this study demonstrate the suitability of FT-NIR spectroscopy for the quality control analysis of feedstocks for biodiesel production.  相似文献   

20.
In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid–liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R2 < 0.95). On the other hand, the SENLIBS method of analysis improved the sensitivity, the precision and the linearity of the calibration curve with respect to the direct analysis of microdroplets. In comparison with experimental results obtained by direct analysis, SENLIBS also allowed several replicate measurements to be carried out in a single microdroplet. The limit of detection obtained was 6 μg g 1 of Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号