首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The method of comparing experimental and calculated ion ratios to determine a gas kinetic temperature (Tgas) characteristic of the origin of a polyatomic ion in inductively coupled plasma-mass spectrometry (ICP-MS) is applied to ArO+. Repeated measurements of ion ratios involving this species yield erratic Tgas values. Complications arise from the predicted presence of a low-lying excited electronic state (2Π) above the 4Σ ground state. Omission of this excited state yields unreasonably high temperatures (> 10,000 K) for nine out of nineteen trials. Inclusion of the excited electronic state in the partition function of ArO+ causes temperatures to increase further. The problem appears to be related to the prediction that ArO+ in the 2Π excited state dissociates into Ar+ and O, different products than ArO+ 4Σ which dissociates into Ar and O+. Adjustments to the calculations to account for these different products yield reasonable temperatures (2100 to 3500 K) that are consistent from day-to-day and similar to those seen for other weakly-bound polyatomic ions.  相似文献   

2.
Several polyatomic ions in inductively coupled plasma–mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (Tgas) value. In our opinion, the resulting Tgas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N2H+ to N2+ leads to a calculated Tgas of 4550 to 4900 K, depending on the computational data used. The COH+ to CO+ system yields a similar temperature, which is not surprising considering the similar energies and structures of COH+ and N2H+. The dissociation of H2CO+ to HCO+ leads to a much lower Tgas (< 1000 to 2000 K). Finally, the dissociation of H2COH+ to HCOH+ generates a Tgas value between those from the other HxCO+ ions studied here. All of these measured Tgas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO+ and COH+, and H2CO+ and HCOH+, which have virtually the same m/z values and need to be considered in the interpretation of results.  相似文献   

3.
A general method for identifying the origin of a particular polyatomic ion is described. Based on a postulated dissociation reaction, measured ion signal ratios (e.g. Ar2+/Ar+) are combined with mass bias corrections and estimates of the density of the neutral product (usually Ar, O or H atoms) to determine a gas kinetic temperature Tgas. The temperature can also be measured by the reduction in pressure when the ICP is sampled (compared to room temperature argon), or by other means. Dissociation energies and spectroscopic constants for the ions are necessary. For the particular instrument used, some of the findings of this study are: (a) ArO+ and ArN+ can be either dissociated (if the plasma potential is high) or created (if the plasma potential is low) by collisions between the sampler and skimmer; (b) the strongly-bound oxide ions O2+ and MO+ for the rare earths are observed at levels consistent with Tgas ∼5300 K in a ‘hot’ plasma, but ClO+ is formed in excess; and (c) the abundances of most other polyatomic ions like H2O+ and ArH+ correspond to higher densities than would be expected in the ICP itself.  相似文献   

4.
This paper provides a calculation method for carbon activity in CO-H2-H2O atmosphere. The thermodynamic parameters (aC) gas (carbon activity in environment) of different compositions at any temperature can be obtained by △Go T. A theoretical analysis has been conducted into the thermodynamic role of iron and the dependence of possible metal-dusting occurrence on temperature, gas composition and total pressure. In CO-H2-H2O gas mixtures, decreasing the molar fraction of H2O and increasing total pressure expands the temperature region for metal dusting. In CO-H2-H2O gas mixture of different compositions at any temperature and pressure for Fe, depending on relative values of (aC) gas , (aC) Fe3C/Fe and aC = 1, three zones were found to exist.  相似文献   

5.
Common polyatomic ions (ArO+, NO+, H2O+, H3O+, Ar2+, ArN+, OH+, ArH+, O2+) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (Tgas) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the Tgas value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal.  相似文献   

6.
Electron density (ne) and ionization temperature (Tion) are measured using atomic emission spectrometry (AES) from the small funnel of gas just outside the sampling orifice of an inductively coupled plasma-mass spectrometer (ICP-MS). Rotational temperature (Trot) is measured using an OH emission band. Tion is also determined for the same elements (Zn and Cd) by using M+ ion signal ratios by MS. For matrix-free solutions, typical values are ne=1.6×1015 cm−3, Trot=3340 K, Tion (MS)≈Tion (AES)≈7000 K. This agreement between the Tion values supports other observations that, for atomic analyte ions M+ of similar m/z values in matrix-free solutions, the relative signals in the mass spectrum reflect the corresponding relative abundances in the ICP region being drawn into the sampler. Using either MS or AES, Tion for Cd is 300–400 K higher than that for Zn, which indicates that Tion can vary for different elements in the ICP. Sodium nitrate matrix at levels up to 1000 ppm Na does not cause a measurable change in ne; 2000 ppm Na causes ne to increase to 2.1×1015 cm−3. Sodium matrix has a large effect on the MS signal levels but does not greatly change the resulting Tion values measured optically.  相似文献   

7.
The spin-lattice relaxation time T1 of 129 Xe gas is calculated with the kinetic theory due to Chem and Snider. A Lennard-Jones (12,6) potential functions is employed as a model for the spherical potential while the transient spin-rotation interaction is assumed to be responsible for the relaxation of the nuclei. Cross sections for spin transitions on collisions are calculated either quantum mechanically or semiclassically depending on the relative energy. The temperature dependence of T1 is determined in the range 200–450 K. The calculated value of T1 at 298 K and 1 amagat is 2.8 x 05 s while the value measured by Hund and Carr is (2.0 ± 0.2) x 105s.  相似文献   

8.
The time constants for population relaxation of optically pumped Pb+ ions in a Paul ion trap have been determined in a He buffer gas atmosphere with additional components of other gases. For the 6P 1/2 ground state of Pb+ and an ion temperatur of 104 K we find cross sections of 0.72(0.33)·10?17 cm2; 0.59(0.38)·10?15 cm2; and 2.56(0.74)·10?14 cm2 for He, N2 and O2, respectively. The error includes an estimated 20% uncertaincy in the pressure calibration of a residual gas analyser.  相似文献   

9.
The rate constant for methyl radical recombination has been measured over the temperature range 296–577 K and at pressures between 5 and 500 Torr using laser flash photolysis, coupled with absorption spectroscopy at 216.36 nm. Analysis of the fall-off curves gives k = (2.78 ± 0.18) × 10?11 exp(154 ± 22 K/T) cm3 molecule?1 s?1 and k0 = (6.0 ± 3.3) × 10?29 exp(1680 ± 300 K/T) cm6 molecule?2 s?1. The quoted errors (two standard deviations) do not include the present uncertainty in the absorption cross section, which is a major source of error (± 30%).  相似文献   

10.
The Kerr constant (BT) of deionized liquid water was measured in the temperature range from 280 K to 350 K using 2 μs duration electric pulse fields up to 50 kV cm?1. The value of BT has been determined as 2.92 × 10?14 mV?2 at 298 K. Results indicate a steady decrease in the value of the Kerr constant with the rise of temperature.  相似文献   

11.
Electronic excitation (Texc) and rotational (Trot) temperatures were determined for a parallel plate capacitively coupled rf plasma operating at atmospheric pressure. Texc was calculated from the slope of the Boltzmann plot using Fe and He as the thermometric species and Pb excitation temperature was calculated using the two line method. Over a power range from 100 W to 250 W, excitation temperatures are 3255–3900 K for He, 3540–4500 K for Pb, and 4300–4890 K for Fe. The rotational temperature was measured using both OH and N2+ molecular spectra and the values are in the range of 828–911 K and 845–956 K respectively over a power range of 75–275 W. Signal-to-noise ratios, signal-to-background ratios, and absolute detection limit for lead (0.33 ng) and silver (24 pg) are also reported.  相似文献   

12.
Using the relative kinetic method, rate coefficients have been determined for the gas‐phase reactions of chlorine atoms with propane, n‐butane, and isobutane at total pressure of 100 Torr and the temperature range of 295–469 K. The Cl2 photolysis (λ = 420 nm) was used to generate Cl atoms in the presence of ethane as the reference compound. The experiments have been carried out using GC product analysis and the following rate constant expressions (in cm3 molecule?1 s?1) have been derived: (7.4 ± 0.2) × 10?11 exp [‐(70 ± 11)/ T], Cl + C3H8 → HCl + CH3CH2CH2; (5.1 ± 0.5) × 10?11 exp [(104 ± 32)/ T], Cl + C3H8 → HCl + CH3CHCH3; (7.3 ± 0.2) × 10?11 exp[?(68 ± 10)/ T], Cl + n‐C4H10 → HCl + CH3 CH2CH2CH2; (9.9 ± 2.2) × 10?11 exp[(106 ± 75)/ T], Cl + n‐C4H10 → HCl + CH3CH2CHCH3; (13.0 ± 1.8) × 10?11 exp[?(104 ± 50)/ T], Cl + i‐C4H10 → HCl + CH3CHCH3CH2; (2.9 ± 0.5) × 10?11 exp[(155 ± 58)/ T], Cl + i‐C4H10 → HCl + CH3CCH3CH3 (all error bars are ± 2σ precision). These studies provide a set of reaction rate constants allowing to determine the contribution of competing hydrogen abstractions from primary, secondary, or tertiary carbon atom in alkane molecule. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 651–658, 2002  相似文献   

13.
The absolute rate constant of the reaction of O(3P) with toluene was measured by the microwave discharge-fast-flow method to obtain kT = 109.7–2.7/2.303RT l./mole·sec at 100–375°C. This was in good agreement with the rate constant calculated from the combination of the relative rate constant obtained by Jones and Cvetanovic with the recently determined absolute rate constants of the reaction of O(3P) + olefins. The extrapolation of the above Arrhenius plot to 27°C was also in good agreement with the absolute value of kT = 4.5 × 107 l./mole·sec determined recently by Atkinson and Pitts at 27°C. The rate constant of the reaction of chlorobenzene with O(3P), obtained at 238°C as 108.3 l./mole·sec by a competitive method, was smaller than kT by a factor of about two at the same temperature.  相似文献   

14.
The heat capacity (C p, m) of ferrocenemethanol (FM) C5H5FeC5H4CH2OH have been measured by the low-temperature adiabatic calorimetry method in the range 6–371 K. The triple point temperature, the enthalpy of fusion, and the purity of the substance under consideration have been determined. The ideal gas thermodynamic functions of FM—absolute entropy S m(g) 0 and change in the enthalpy Δ 0 T H m at 298.15 K—have been derived from the heat capacity data and the known values of the saturation vapor pressure and enthalpy of sublimation. The ideal gas thermodynamic functions C p, m 0 and S m(g) 0 and the enthalpy of formation of FM have been calculated by the empirical difference method at T = 298.15 K. The experimental and calculated values of the thermodynamic functions are consistent within error limits, which proves their reliability.  相似文献   

15.
The conductivities of chloride, bromide, iodide, nitrate, and perchlorate of hexaamminecobalt(III) complex were measured in 10-80 wt.% methanol-water mixtures at varying temperatures from 10 to 50°C. The ion association constants were estimated by analyzing conductivity data in terms of the Robinson-Stokes equations. Ion-association constants calculated for all complex salts in methanol-water mixtures increased, depending on the percentage of methanol. This was equivalent to the ion-association constants increasing with a decrease in the the dielectric constant of the mixtures. K A values increased with increasing temperature for the chloride, bromide, and iodide of [Co(NH3)6]3+. It was observed that these values indicated some disorder, dependent on the temperature, for nitrate and perchlorate. Thermodynamic parameters (Gibbs' free energy, entropy and enthalpy of ion association) were estimated from the temperature dependence of the ion-association constant. The limiting molar conductivities of complex ion and monovalent anions in the mixed solvents were determined from our experimental data by using the Kohlraush equation.  相似文献   

16.
A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA–SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m−3 (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method.  相似文献   

17.
The application of Marcus theory of electron transfer reactions for the case of radical ion chemiluminescence of 9,10-diphenylanthracene (DPA) gives a high rate constant value (109–1010 M?1 s?1) for the formation of the second triplet state (T2). It is suggested that the near infrared emission observed during electrochemiluminescence of DPA is due to T2 → T1 fluorescence based on the high yield of T2 (≈0.7) in the electron transfer reaction.  相似文献   

18.
Absolute rate coefficients for the reaction of OH with HCl (k1) have been measured as a function of temperature over the range 240–1055 K. OH was produced by flash photolysis of H2O at λ > 165 nm, 266 nm laser photolysis of O3/H2O mixtures, or 266 nm laser photolysis of H2O2. OH was monitored by time-resolved resonance fluorescenceor pulsed laser–induced fluorescence. In many experiments the HCl concentration was measured in situ in the slow flow reactor by UV photometry. Over the temperature range 240–363 K the following Arrhenius expression is an adequate representation of the data: k1 = (2.4 ± 0.2) × 10?12 exp[?(327 ± 28)/T]cm3 molecule?1 s?1. Over the wider temperature range 240–1055 K, the temperature dependence of k1 deviates from the Arrhenius form, but is adequately described by the expression k1 = 4.5 × 10?17 T1.65 exp(112/T) cm3 molecule?1 s?1. The error in a calculated rate coefficient at any temperature is 20%.  相似文献   

19.
Heat capacity C p(T) of the orthorhombic polymorph of L-cysteine was measured in the temperature range 6–300 K by adiabatic calorimetry; thermodynamic functions were calculated based on these measurements. At 298.15 K the values of heat capacity, C p; entropy, S m0(T)-S m0(0); difference in the enthalpy, H m0(T)-H m0(0), are equal, respectively, to 144.6±0.3 J K−1 mol−1, 169.0±0.4 J K−1 mol−1 and 24960±50 J mol−1. An anomaly of heat capacity near 70 K was registered as a small, 3–5% height, diffuse ‘jump’ accompanied by the substantial increase in the thermal relaxation time. The shape of the anomaly is sensitive to thermal pre-history of the sample.  相似文献   

20.
The rate constant for the reaction of hydroxyl radicals (OH) with molecular hydrogen (H2) was measured behind reflected shock waves using UV laser absorption of OH radicals near 306.69 nm. Test gas mixtures of H2 and tert‐butyl hydroperoxide (TBHP) diluted in argon were shock‐heated to temperatures ranging from 902 to 1518 K at pressures of 1.15–1.52 atm. OH radicals were produced by rapid thermal decomposition of TBHP at high temperatures. The rate constant for the title reaction was inferred by best fitting the measured OH time histories with the simulated profiles from the comprehensive reaction mechanism of Wang et al. (USC‐Mech v2.0) (2007). The measured values can be expressed in the Arrhenius equation as k1(T) = 4.38 × 1013 exp(–3518/T) cm3 mol?1 s?1 over the temperature range studied. A detailed error analysis was performed to estimate the overall uncertainty of the title reaction, and the estimated (2 – σ) uncertainties were found to be ±17% at 972 and 1228 K. The present measurements are in excellent agreement with the previous experimental studies from Frank and Just (Ber Bunsen‐Ges Phys Chem 1985, 89, 181–187), Michael and Sutherland (J Phys Chem 1988, 92, 3853–3857), Davidson et al. (Symp (Int) Combust 1988, 22, 1877–1885), Oldenborg et al. (J Phys Chem 1992, 96, 8426–8430), and Krasnoperov and Michael (J Phys Chem A 2004, 108, 5643–5648).In addition, the measured rate constant is in close accord with the non‐Arrhenius expression from GRI‐Mech 3.0 ( http://www.me.berkeley.edu/gri_mech/ ) and the theoretical calculation using semiclassical transition state theory from Nguyen et al. (Chem Phys Lett 2010, 499, 9–15).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号