首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DC magnetization and AC magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B0.94C0.06)2. AC magnetic losses were derived from the AC susceptibility data as a function of the AC amplitude and the DC bias magnetic field. From the DC magnetization loops critical current densities were derived as a function of temperature and DC field. Results show that the substitution with carbon decreases critical current densities at low external magnetic fields, in contrast to the well known effect of an increase of the critical current densities at higher magnetic fields.  相似文献   

2.
The exact formula of Tc’s equation and the isotope effect exponent of two-band s-wave superconductors in the weak-coupling limit are derived by considering the influence of interband interaction. In each band, our model consists of two pairing interactions: the electron-phonon interaction and non-electron-phonon interaction. We find that the isotope effect exponent of MgB2, α = 0.3 with Tc ≈ 40 K can be found in the weak coupling regime and interband interaction of electron-phonon shows more effect on the isotope effect exponent than on the interband interaction of non-phonon.  相似文献   

3.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

4.
The minimal magnetic field H(c2) destroying superconductivity in the bulk of a superconductor is smaller than the magnetic field H(c3) needed to destroy surface superconductivity if the surface of a superconductor coincides with one of the crystallographic planes and is parallel to the external magnetic field. While for a dirty single-band superconductor the ratio of H(c3) to H(c2) is a universal temperature-independent constant 1.6946, for dirty two-band superconductors this is not the case. I show that in the latter case the interaction of the two bands leads to a novel scenario with the ratio H(c3)/H(c2) varying with temperature and taking values larger and smaller than 1.6946. The results are applied to MgB(2) and compared with recent experiments (A. Rydh, cond-mat/0307445).  相似文献   

5.
We study theoretically the effect of transition-metal (TM) substitution in iron-based superconductors through treating all of the TM ions as randomly distributed impurities. The extra electrons from TM elements are localized at the impurity sites. In the meantime the chemical potential shifts upon substitution. The phase diagram is mapped out and it seems that the TM elements can act as effective dopants. The local density of states (LDOS) is calculated and the bottom becomes V-shaped as the impurity concentration increases. The LDOS at the Fermi energy ρ(ω = 0) is finite and reaches the minimum at the optimal doping level. Our results are in good agreement with scanning tunneling microscopy experiments.  相似文献   

6.
在弱耦合极限下考虑带间相互作用,得到了二带s-波超导体临界温度Tc的公式及同位素效应指数的公式。在此模型中,耦合相互作用在每一带中包括两部分:电子-声子相互作用和非电子-声子相互作用,当Tc≈40K时,在弱耦合机制中得到MgB2的同位素效应指数αB=0.3,并且带间的电子-声子相互作用比非电子-声子作用对同位素效应指数的影响大。  相似文献   

7.
The varied bonding state and microstructure characterization were discussed for carbon-boron nitrogen (CBN) with abundant phase structure and nanostructure, which were synthesized directly by mechanical alloying technique at room temperature. According to the results of SEM and X-ray photoelectron spectroscopy (XPS) of CBN with different ball milling time, it is substantiated that the bonding state and microstructure for CBN were closely related to the ball milling time. With the increase of the ball milling time, some new chemical bonding states of CBN were observed, which implies that some new bonding state and microstructures have been formed. The results of XPS are accordance with that of X-ray diffraction of CBN.  相似文献   

8.
9.
Recent measurements of the anisotropy of the upper critical field B(c2) on MgB2 single crystals have shown a puzzling strong temperature dependence. Here, we present a calculation of the upper critical field based on a detailed modeling of band structure calculations that takes into account both the unusual Fermi surface topology and the two gap nature of the superconducting order parameter. Our results show that the strong temperature dependence of the B(c2) anisotropy can be understood as an interplay of the dominating gap on the sigma band, which possesses a small c-axis component of the Fermi velocity, with the induced superconductivity on the pi-band possessing a large c-axis component of the Fermi velocity. We provide analytic formulas for the anisotropy ratio at T=0 and T=T(c) and quantitatively predict the distortion of the vortex lattice based on our calculations.  相似文献   

10.
11.
在多晶A l2O3衬底上,以B2H6作为硼源,化学气相沉积先驱B薄膜,采用Mg扩散方法,在不同退火时间条件下制备了MgB2超导薄膜。通过电阻-温度曲线测量、X射线衍射分析和扫描电子显微镜形貌观测方法,研究了退火时间对MgB2薄膜的超导特性、晶体结构、表面形貌的影响。  相似文献   

12.
Ball collisions in milling devices are governed by complex dynamics ruled by impredictable impulsive forces. In this paper, nonlinear dynamics techniques are employed to analyze the time series describing the trajectory of a milling ball in an empty container obtained from a numerical model. The attractor underlying the system dynamics was reconstructed by the time delay method. In order to characterize the system dynamics the calculation of the spectrum of Lyapunov exponents was performed. Six Lyapunov exponents, divided into two terns with opposite sign, were obtained. The detection of the positive tern demonstrates the occurrence of the hyperchaotic qualities of the ball motion. A fractal Lyapunov dimension, equal to 5.62, was also obtained confirming the strange features of the attractor. (c) 1999 American Institute of Physics.  相似文献   

13.
The carbonization treatment was employed to the sugar-coated B powders before it mixed with Mg powders. It is found that the pre-carbonization treatment could effectively suppress the formation of MgO and Mg2C3 impurity in the sugar-doped samples and thus result in an improved Jc at low fields in the sugar-doped samples. Besides, the sintering process of sugar-doped samples was also investigated combined with the thermal analysis and it is found that the sugar addition could obviously lower the onset temperature of the solid–solid reaction between Mg and B.  相似文献   

14.
An explicit expression has been derived for the volume dependence of electron-phonon coupling strength () by using a recently proposed quadratic form of the screened pseudopotential and by considering the variation of Fermi momentum with volume. Variation of Coulomb pseudopotential ( *) has also been explicitly considered by varying the Fermi momentum. Dependence of transition temperatureT c and the logarithm of the effective interaction strength (N 0 V) on the volume has been studied for eight nontransition metallic superconductors. A linear drop inT c for small values of (–/ 0) as well as the calculated values of= InN 0 V/ In, exhibits better matching with the experimental data, as compared to the earlier theoretical results.  相似文献   

15.
Fe-doped TiO2 powder was prepared by high-energy ball milling, using TiO2 Degussa P-25 and α-Fe powders as the starting materials. The structure and magnetic properties of the Fe-doped TiO2 powder were studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and vibrating sample magnetometer. The Reitveld refinement of XRD revealed that ball milling not only triggered incorporation of Fe in TiO2 lattice but also induced the phase transformation from anatase to rutile in TiO2 and consequently the milled Fe-doped TiO2 powder contained only rutile.57Fe Mössbauer effect measure showed that Fe atoms existed in Fe2+ and Fe3+ state, which were assigned to the solid solution FexTi1−xO2. The magnetization measurements indicated that the milled Fe-doped TiO2 powder was ferromagnetic above room temperature. The ferromagnetism in our milled Fe-doped TiO2 powder seemingly does not come from Fe and iron oxides particles/clusters but from the Fe-doped TiO2 powder matrices.  相似文献   

16.
The 5d transition metal W was added into the MgB2 superconductor. The Mg, B and W were sintered at 1173 K for 30 min under H2/Ar atmosphere in the electric furnace. The Wx(MgB2)1?x samples were prepared in the W concentration range of 0 ? x ? 0.05. Temperature and field dependences of magnetization were measured by the SQUID magneto-meter. The field and x dependences of Jc at 20 K were analyzed by the extended critical state model. The enhancement of Jc became maximum for the x = 0.02 sample.  相似文献   

17.
Recent experimental data of anisotropic magnetoresistivity measured in MgB2 films have shown an intriguing behaviour: the angular dependence of magnetoresistivity changes dramatically with temperature and disorder. In order to explain such phenomenology, in this work, we extend our previous analyses on multiband transverse magnetoresistivity in magnesium diboride, by calculating its analytic expression, assuming a constant anisotropic Fermi surface mass tensor. The calculation is done for arbitrary orientation of the magnetic field with respect to the crystalline axes and for the current density either perpendicular or parallel to the magnetic field. This approach allows to extract quite univocally the values of the scattering times in the σ- and π-bands by fitting experimental data with a simple analytic expression. We also extend the analysis to the magnetoresistivity of polycrystalline samples, with an arbitrary angle between the current density and the magnetic field, taking into account the anisotropy of each randomly oriented grain. Thereby, we propose magnetoresistivity as a very powerful characterization tool to explore the effect of disorder by irradiation or selective doping as well as of phonon scattering in each one of the two types of bands, in single crystals and polycrystalline samples, which is a crucial issue in the study of magnesium diboride.  相似文献   

18.
TiN/TiO2 nanoparticle photocatalyst was prepared by ball milling of TiO2 in H2O solution doped with TiN. The photocatalyst was characterized by UV–Vis diffuse reflection spectroscopy, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Based on the results of the characterization, the mechanism of the increase in photocatalytic activity was investigated. The results show that when the amount of doped TiN is 0.15 wt%, the photocatalytic activity of the TiN/TiO2 is at its peak. Compared with TiO2, the photoabsorption wavelength range of the TiN/TiO2 photocatalyst red-shifts about 30 nm, and the photoabsorption intensity increases as well. The photocatalytic activities of the photocatalyst are higher than that of TiO2 under UV and visible light irradiation. The increase of surface Ti3+ reactive center and the extension of the photoabsorption wavelength are the main factors for the increase in the photocatalytic activity of the TiN/TiO2. Doped TiN neither changes the TiO2 crystal phase nor creates new crystal phase by ball milling.  相似文献   

19.
The reaction kinetics for converting B fibers into MgB2 fibers are measured by in situ synchrotron X-ray diffraction and ex situ by metallography as a function of the following processing variables: fiber diameter, fiber doping, fiber surface treatment, Mg flux (liquid or gaseous Mg), and thermal cycling. Changes to the fiber diameter, surface treatment and Mg flux affect little the rates of the reaction, while C-doping of fibers dramatically decreases reaction rate and thermal cycling increases the reaction rate.  相似文献   

20.
We argue, based on band structure calculations and the Eliashberg theory, that the observed decrease of T(c) of Al and C doped MgB2 samples can be understood mainly in terms of a band filling effect due to the electron doping by Al and C. A simple scaling of the electron-phonon coupling constant lambda by the variation of the density of states as a function of electron doping is sufficient to capture the experimentally observed behavior. Further, we also explain the long standing open question of the experimental observation of a nearly constant pi gap as a function of doping by a compensation of the effect of band filling and interband scattering. Both effects together generate a nearly constant pi gap and shift the merging point of both gaps to higher doping concentrations, resolving the discrepancy between experiment and theoretical predictions based on interband scattering only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号