首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific heat measurements between 0.5 and 4.2°K are reported for the system (La, Gd) Al2 in both the superconducting and normal state. The observed specific heat jump at the superconducting transition temperature Tc is in excellent agreement with the Abrikosov-Gor'kov (AG) theory. This is in accordance with the previously reported close correspondence of the Tc vs. Gd concentration curve with the AG theory. Two very interesting features occur in the normal state specific heat. First, the Gd impurities cause a surprisingly strong enhancement of the electronic specific heat coefficient. Second, there is a large magnetic field dependent Schottky-like anomaly at low temperatures. This anomaly persists even in the superconducting state.  相似文献   

2.
Measurements of the electronic specific heat in the normal and superconducting state of 15 superconducting binary complex phases of theσ- andχ-structure are presented. The alloys have been prepared under high vacuum in an electron-beam melting apparatus described in detail. In the investigated range between 6 and 7 valence-electrons, the obvious correlation betweenT c, the superconducting critical temperature, andγ, the coefficient of the electronic specific heat, leads to agreement with the empirical rules, found byMatthias. Recently,Morel andAnderson andGarland have calculated the values of the deviation of the normal isotope-effect. With these values it is possible to relate the observedT c-data for most of the transition metal alloys investigated so far to the density of states at the Fermi level and to a systematically varying electron-phonon interaction parameter. In the superconducting state, an exponential dependence of the electronic specific heat on 1/T is found in the range betweenT c/2 andT c/6. However the parameters are somewhat different from those predicted by theory. The values ofγ observed also account for the lack of any correlation between the total magnetic susceptibility and the superconducting critical temperature for these phases.  相似文献   

3.
In the Mo-Si binary system, Mo5Si3 crystallizes in the W5Si3 (T1 phase) structure type. However, when boron replaces silicon in this compound, a structural transition occurs from the W5Si3 prototype structure to the Cr5B3 prototype structure (T2 phase) at the composition Mo5SiB2. Mo5SiB2 has received much attention in the literature as a candidate for structural application in high-temperature turbines, but its electronic and magnetic behavior has not been explored. In this work, we show that Mo5SiB2 is a bulk superconducting material with critical temperature close to 5.8 K. The specific-heat, resistivity and magnetization measurements reveal that this material is a conventional type II BCS superconductor.  相似文献   

4.
Measurements of the depressions of the superconducting transition temperature Tc with Sm impurity concentration and the specific heat jump at Tc as a function of Tc, and the temperature dependences of the normal state specific heat and magnetic susceptibility are reported for the matrix impurity system (LaSm)Sn3. The results constitute the first definitive evidence of a Kondo effect for a dilute alloy containing Sm impurities.  相似文献   

5.
The specific heat of single phase YBa2Cu3O7-δ has been measured using non-adiabatic method between 4.2K and 120K. There is a specific heat anomaly Δc at 90K (about 3.2% of total specific heat) approximately, due to superconducting transition. From the measured value of ΔC and transition temperature Tc, the electronic density of state at Fermi level N(EF) and Sommerfeld parameter γ calculated are 2.55±0.30states/eV.Cu-atom and 2.77±0.30 mJ/mole.K2, respectively. The experimental result of N(EF) is consistent with that of the band calculation by Mattheiss. The Debye temperature above Tc in this material deduced from Debye function is about 340K. Below 20K, the relation C=γ'T+βT3 is satisfied. But the value of γ' is smaller. That means, most of the electrons have formed superconducting Cooper pairs which give no contribution to specific heat below 20K.  相似文献   

6.
The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2 were measured at low temperatures and in the neighborhood of T c . In addition to the well-known superconducting transition at T c ≈40 K, this compound was found to exhibit anomalous behavior of both the specific heat and thermal conductivity at lower temperatures, T≈10–12 K. Note that the anomalous behavior of C(T) and K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expansion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of carriers and its transition to the superconducting state at Tc2≈10?12 K.  相似文献   

7.
徐继海 《物理学报》1988,37(1):111-118
根据文献[1]中给出的模型和能隙方程,计算了超导态的热力学临界磁场,Tc处的比热跃变以及Tc以下的比热行为。结果表明:有关热力学量的临界值与实验结果定性相符;Tc以下的比热行为在整个温区与CeCu2Si2和UBe13的实验结果符合。 关键词:  相似文献   

8.
An analysis is made of characteristics of the superconducting state (s-and d-pairing) using a simple, exactly solvable model of the pseudogap state produced by fluctuations of the short-range order (such as antiferromagnetic) based on a Fermi surface model with “hot” sections. It is shown that the superconducting gap averaged over these fluctuations is nonzero at temperatures higher than the mean-field superconducting transition temperature T c over the entire sample. At temperatures T > T c superconductivity evidently exists in isolated sections (“ drops”). Studies are made of the spectral density and the density of states in which superconducting characteristics exist in the range T > T c however, in this sense the temperature T = T c itself is no different in any way. These anomalies show qualitative agreement with various experiments using underdoped high-temperature superconducting cuprates.  相似文献   

9.
The specific heat of LaAl2 and (La1-xCex)Al2 (x ? 0.0064) has been measured between 0.3 and 5 K, both in the superconducting and in the normal state. For all samples the same values for the Debye temperature as well as for the electronic specific heat coefficient have been determined. LaAl2 shows an excellent BCS behavior. A remarkable excess specific heat at low temperatures due to the Kondo effect has been observed for all superconducting as well as for the normal conducting (La1-xCex) Al2 alloys. The specific heat jump ΔC at Tc depressed rapidly with increasing Ce concentration, allows the Kondo temperature TK ? 1 K to be determined. ΔC vanishes at finite temperatures.  相似文献   

10.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

11.
《Physica B+C》1988,147(2-3):175-180
In this paper a model to describe the free carrier-bipolaron interacting system is proposed. Effective hopping of the bipolaron is studied in the slave-boson approach, and a characteristic temperature T1 is obtained, below which the system enters a coherent state. The density of states in the normal state and the superconductivity of the system are discussed in a quasiparticle picture. The results show that the mixing between the free carrier and the bipolaron results in an enhancement of the effective mass of the quasiparticle and meanwhile the renormalized coupling interaction, arising from the negative correlation energy in the bipolaron region, enhances the effective superconducting coupling interaction. Under the most favourable conditions, the superconducting transition temperature Tc ∼ ωc, where ωc is the Debye frequency related with local electron-phonon coupling. In general we have T1 > TcTc0 (Tc0 is the superconducting transition temperature of a usual superconductor). Therefore the system will firstly enter a coherent state before becoming a high-Tc superconductor.  相似文献   

12.
We report the superconducting properties of the pyrochlore oxide Cd2Re2O7. The bulk superconducting transition temperature Tc is about 1.0 K, and the upper critical field Hc2 determined by the measurement of specific heat under magnetic fields is 0.29 T. The superconducting coherence length is estimated to be 34 nm. Specific heat data measured on single crystals suggest that the superconducting gap of Cd2Re2O7 is nodeless.  相似文献   

13.
The superconducting transition temperature (Tc) and the temperature dependence of the normal state resistivity of the Ti1?xSbx system between Tc and 300 K have been studied. The Tc values are found to depend on the heat treatment of the samples. Below 40 K, all alloys show a T2 dependence of the resistivity. However, the sample with x = 0.53 is not superconducting and shows a different behaviour of the resistivity.  相似文献   

14.
The behavior of the electrical resistivity ρ(T), the superconducting transition temperature T c , and the upper critical field H c2(T) of a polycrystalline sample of YNi2B2C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval T ann = 100–1000°C has been studied. It has been found that the irradiation of YNi2B2C with a fluence of 1019cm?2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T), T c , and H c2(T) values are almost completely recovered upon annealing at up to T ann = 1000°C. The quadratic dependence ρ(T) = ρ0 + a 2 T 2 is observed for the sample in the superconducting state (T c = 5.5?14.5 K). The coefficient a 2 (proportional to the square of the electron mass m*) hardly changes. The form of the dependence of T c on ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1 and Δ21 ~ 2Δ2). The degradation rate of Δ1 is about three times higher than that of Δ2. The dependences dH c2/dT on ρ0 and T c may be described by the relations for a superconductor in the intermediate limit (the coherence length ζ0 is on the order of the electron mean free path l tr) under the assumption of a nearly constant electron density of states on the Fermi level N(E F). The observed behavior of T c obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.  相似文献   

15.
The normal state properties (the electronic specific heat constant, Debye temperature and electrical resistivity) and superconducting state properties [the superconducting transition temperature, Tc, and the upper critical field at 0 K, Hc2(0)] have been studied in the La3S4-La2S3 system. The superconducting properties and the electronic specific heat constant exhibit the maximum values in the alloy with the lowest sulfur content that does not undergo a low temperature crystallographic transformation. At lower sulfur contents the alloys exhibit a cubic to tetragonal transformation at ~80 K with a serious degradation in their superconducting properties, especially Hc2 (0). These alloys clearly illustrate that materials which are almost but not quite unstable are good superconductors, relative to the more stable compositions.  相似文献   

16.
For superconducting LaOs2 of the pure C-15 phase we measured the low temperature specific heat, the upper critical field and the susceptibility in the normal state. From the specific heat results we confirm the transition temperature of the C-15 phase and derive several thermodynamic parameters of the normal and superconducting state like γ, θD, ΔC, Δ(0), and Hc(0). The results suggest that LaOs2 is an extremely strong coupling superconductor like La3In and La3Tl.  相似文献   

17.
The terahertz and infrared spectra of the complex dynamic conductivity, as well as the temperature dependences of the density of a superconducting condensate and the electronic specific heat of superconducting Ba(Fe1 ? x Co x )2As2 compounds, have been analyzed within a Bardeen-Cooper-Schrieffer-like model of a multiband superconductor with strong coupling. It has been shown that the superconducting state of these compounds is determined by three (one electronic and two hole) weakly interacting condensates. The order parameters of the condensates are: Δ1 ≈ 15 cm?1, Δ2 ≈ 21 cm?1, and Δ3 ≈ 30–35 cm?1. The results significantly refine the existing notions on the structure of the superconducting state of Co-doped BaFe2As2 multiband compounds.  相似文献   

18.
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ? Tc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.  相似文献   

19.
Specific heat measurements performed between 1.4 and 20 K on bulk and cold-worked V, Nb and Ta superconducting materials are presented. The plastic deformation produces an increase in the superconducting transition temperature Tc, an increase which is relatively less important for Ta than for Nb and less for Nb than for V. An increase is registered for the normal linear coefficient of specific heat γ whereas the Debye temperature decreases slightly. The apparent relation between the increase of Tc and γ suggests qualitatively that the vibrating mobile dislocation contribution is not the only origin of the increase of γ but that a band structure contribution is also to be taken into account.  相似文献   

20.
The electrical resistivity and the thermopower are measured on the single phase superconductor Ba2YCu3O9-δ (δ=2.1). The results indicate that the temperature dependences of the resistance and thermopower exhibit typical metallic behaviour, and the sample conducts via electrons at high temperatures. The behaviour of the thermopower can be described with Mott's semi-classical model. The specific heat of electrons in normal state has been estimated 780mJ/K·mole at 200K, i.e. γ=3.9mJ/K2·mole. Unusual phonon-drag effect is observed above the superconducting transition temperature Tc. Below Tc, the electrical resistivity and the thermopower all drop to zero corresponding to a superconducting ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号