首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu X  Zhao L  Shen H  Xu H  Lu L 《Talanta》2011,83(3):1023-1029
Nitroexplosives, such as 2,4,6-trinitrotoluene (TNT) which is a leading example of nitroaromatic explosives, are causing wide concern. Motivated by the urgent demand for trace analysis of explosives, novel surface-enhanced Raman spectroscopy substrates based upon highly ordered Au nanoparticles have been fabricated by a simple droplet evaporation method. It is noteworthy that an ethylhexadecyldimethyl ammonium bromide bilayer surrounding each individual nanoparticle not only is responsible for these periodic gap structures, but also tends to promote the adsorption of TNT on the composite NPs, thus resulting in a considerable increase of Raman signal. These desirable features endow the resulting SERS substrates with excellent enhancement ability and allow for a label-free detection of common plastic explosive materials even with a concentration as low as 10−9 M.  相似文献   

2.
In this preliminary study, we evaluated four different types of substrate for the at-line coupling of capillary electrophoresis and surface-enhanced (resonance) Raman spectroscopy, CE-SER(R)S, with emphasis on spectral repeatability. We tested Sub1: etched silver foil, Sub2: a vapour-deposited silver film, Sub3: a silver oxalate-precoated silica TLC plate and Sub4: a silica TLC plate on which colloid and poly(l-lysine) were manually added to the analyte spots, used earlier in at-line CE-SE(R)RS. All substrates were first tested by manual spotting using trans-1,2-bis(4-pyridyl)ethylene (BPE) as a model compound for SERS and crystal violet (CV) as a model compound for SE(R)RS. The spectral features of the SE(R)RS spectra of BPE and CV showed a most satisfactory repeatability on all substrates. As expected, the signal intensities varied considerably between runs; this implies that quantification in at-line CE-SE(R)RS should rather be done by means of an on-line absorbance detector. In addition, the suitability of Sub1, Sub2 and Sub4 as deposition substrates after CE was explored using two cationic dyes: CV and basic fuchsin (BF). Good-quality SERRS spectra could be recorded on all three substrates. Although Sub1 and Sub2 have a poor water-sorptivity, they were found to be good substrates for at-line CE-SERRS. They do not require any post-deposition addition of silver colloid and could therefore become attractive alternatives for Sub4.  相似文献   

3.
Paper-based SERS active substrates were prepared adsorbing spherical and star-shaped gold nanoparticles on a standard filter paper support. Besides the deposition conditions, morphological parameters of the particles were found to strongly affect the enhancer properties of the substrates. The developed substrate was tested regarding surface homogeneity as well as in the quantitative analysis of malachite green, – a well documented Raman reporter dye – and proved to be capable also to detect the oxidation products of apomorphine, a well-known drug molecule used in Parkinson's disease. This material is simple to prepare, easy to handle and dispose and as such it could be a perfect target for further development of a new family of mass-produced, cheap solid SERS substrates.  相似文献   

4.
A gold nanoparticle film for surface-enhanced Raman scattering (SERS) was successfully constructed by an ionic surfactant-mediated Langmuir-Blodgett (LB) method. The gold film was formed by adding ethanol to a gold colloid/hexane mixture in the presence of dodecyltrimethylammonium bromide (DTAB). Consequently, gold nanoparticles (AuNPs) assembled at the water/hexane interface due to the decrease in surface charge density of AuNPs. Since DTAB binds the gold surface by a coulombic force, rather than a chemical bonding, it is easily replaced by target molecules for SERS purposes. The SERS enhancement factor of the 80 nm gold nanoparticle film was approximately 1.2 × 10(6) using crystal violet (CV) as a Raman dye. The SERS signal from the proposed DTAB-mediated film was approximately 10 times higher than that from the octanethiol-modified gold film, while the reproducibility and stability of this film compared to an octanethiol-modified film were similar. This method can also be applied to other metal nanostructures to fabricate metal films for use as a sensitive SERS substrate with a higher enhancement factor.  相似文献   

5.
The purpose of this tutorial review is to show how surface-enhanced Raman (SERS) and resonance Raman (SERRS) spectroscopy have evolved to the stage where they can be used as a quantitative analytical technique. SER(R)S has enormous potential for a range of applications where high sensitivity needs to be combined with good discrimination between molecular targets, particularly since low cost, compact spectrometers can read the high signal levels that SER(R)S typically provides. These advantages over conventional Raman measurements come at the cost of increased complexity and this review discusses the factors that need to be controlled to generate stable and reproducible SER(R)S calibrations.  相似文献   

6.
We performed a feasibility test of the cosmetic ingredient kinetin (KT)-gold nanoparticle (AuNP) conjugates by means of vibrational Raman spectroscopy and quantum mechanical calculations. The adsorptions of KT on AuNP surfaces were examined by absorption spectra and surface-enhanced Raman scattering (SERS). The size of KT at the initial concentrations of 10−5 M with the AuNP composites was measured to be 22 nm. Density functional theory (DFT) calculations were performed to estimate the energetic stabilities of KT on an Au cluster atom. The two tautomeric forms of 9H-amino and 7H-amino in KT are predicted to have similar energies on Au. The N3-coordinating geometries in both 9H-amino and 7H-amino forms of KT are predicted to be most stable on an Au cluster. Vibrational analysis also suggested that the two tautomers of KT should coexist in the adsorbed state on Au. The concentration-dependent SERS spectra of KT indicated that 5 × 10−5 M exhibited the highest SERS signals.  相似文献   

7.
Wavelength-scanned surface-enhanced Raman excitation spectroscopy   总被引:1,自引:0,他引:1  
A detailed wavelength-scanned surface-enhanced Raman excitation spectroscopy (WS SERES) study of benzenethiol adsorbed on Ag nanoparticle arrays, fabricated by nanosphere lithography (NSL), is presented. These NSL-derived Ag nanoparticle array surfaces are both structurally well-characterized and extremely uniform in size. The WS SERES spectra are correlated, both spatially and spectrally, with the corresponding localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays. The surface-enhanced Raman scattering (SERS) spectra were measured in two excitation wavelength ranges: (1) 425-505 nm, and (2) 610-800 nm, as well as with the 532-nm line from a solid-state diode-pumped laser. The WS SERES spectra have line shapes similar to those of the LSPR spectra. The maximum SERS enhancement factor is shown to occur for excitation wavelengths that are blue-shifted with respect to the LSPR lambda(max) of adsorbate-covered nanoparticle arrays. Three vibrational modes of benzenethiol (1575, 1081, and 1009 cm(-1)) are studied simultaneously on one substrate, and it is demonstrated that the smaller Raman shifted peak shows a maximum enhancement closer to the LSPR lambda(max) than that of a larger Raman shifted peak. This is in agreement with the predictions of the electromagnetic (EM) enhancement mechanism of SERS. Enhancement factors of up to approximately 10(8) are achieved, which is also in good agreement with our previous SERES studies.  相似文献   

8.
Dual subwavelength Ag gratings with a small gap of about 15 nm are demonstrated to provide a huge additional SERS enhancement, more than 10(3) fold in scattering efficiency over normal SERS on an Ag film due to the strong plasmon coupling, which is simulated by theoretical calculation. The simulation also shows the advantages of the coupled two-layer gratings over the one-layer grating for SERS measurement. Our study provides a promising and feasible way of structure design for extremely sensitive substrates of SERS.  相似文献   

9.
Rationally designed nanostructures for surface-enhanced Raman spectroscopy   总被引:2,自引:0,他引:2  
Research on surface-enhanced Raman spectroscopy (SERS) is an area of intense interest because the technique allows one to probe small collections of, and in certain cases, individual molecules using relatively straightforward spectroscopic techniques and nanostructured substrates. Researchers in this area have attempted to develop many new technological innovations including high sensitivity chemical and biological detection systems, labeling schemes for authentication and tracking purposes, and dual scanning-probe/spectroscopic techniques that simultaneously provide topographical and spectroscopic information about an underlying surface or nanostructure. However, progress has been hampered by the inability of researchers to fabricate substrates with the high sensitivity, tunability, robustness, and reproducibility necessary for truly practical and successful SERS-based systems. These limitations have been due in part to a relative lack of control over the nanoscale features of Raman substrates that are responsible for the enhancement. With the advent of nanotechnology, new approaches are being developed to overcome these issues and produce substrates with higher sensitivity, stability, and reproducibility. This tutorial review focuses on recent progress in the design and fabrication of substrates for surface-enhanced Raman spectroscopy, with an emphasis on the influence of nanotechnology.  相似文献   

10.
Electrochemical surface-enhanced Raman spectroscopy of nanostructures   总被引:1,自引:0,他引:1  
Wu DY  Li JF  Ren B  Tian ZQ 《Chemical Society reviews》2008,37(5):1025-1041
This tutorial review first describes the early history of SERS as the first SERS spectra were obtained from an electrochemical cell, which led to the discovery of the SERS effect in mid-1970s. Up to date, over 500 papers have been published on various aspects of SERS from electrochemical systems. We then highlight important features of electrochemical SERS (EC-SERS). There are two distinctively different properties of electric fields, the electromagnetic field and static electrochemical field, co-existing in electrochemical systems with various nanostructures. Both chemical and physical enhancements can be influenced to some extent by applying an electrode potential, which makes EC-SERS one of the most complicated systems in SERS. Great efforts have been made to comprehensively understand SERS and analyze EC-SERS spectra on the basis of the chemical and physical enhancement mechanisms in order to provide meaningful information for revealing the mechanisms of electrochemical adsorption and reaction. The EC-SERS experiments and applications are then discussed from preparation of nanostructured electrodes to investigation of SERS mechanisms and from characterization of adsorption configuration to elucidation of electrochemical reaction mechanisms. Finally, prospective developments of EC-SERS in substrates, methods and theory are discussed.  相似文献   

11.
Binary nanoparticles composed of a superparamagnetic Fe3O4 core and an Au nanoshell (Fe3O4@Au) were prepared via a simple co-precipitation method followed by seed-mediated growth process. The nanoparticles exhibited functions of both fast magnetic response and local surface plasmon resonance. The Fe3O4@Au nanoparticles were used as probes for surface-enhanced Raman scattering (SERS) using p-thiocresol (p-TC) as reporter molecule. With the ability of analyte capture and concentration magnetically, the Fe3O4@Au nanoparticles showed significant SERS properties with excellent reproducibility. Under non-optimized conditions, detection limit as low as 4.55 pM of analyte can be reached using Fe3O4@Au nanoparticle assemblies, which excel remarkably the cases with traditional Au nanoprobes.  相似文献   

12.
Fundamental insights into the factors that control the properties and structure of gold nanoparticle (AuNP) based assemblies enable the design and construction of new materials. The dimensions (shape and size) and the optical properties of AuNP assemblies are affected by the electronic properties of the organic cross-linker and the nature of the AuNPs.  相似文献   

13.
Hybrid organic–inorganic films containing gold nanoparticles were obtained by the sol–gel method by hydrolytic polycondensation of tetraethoxysilane in aqueous solutions of honey containing HAuCl4 with an acidic catalyst (HCl). The films were examined by absorption and Raman spectroscopy (RS), transmission electron microscopy, and atomic-force scanning microscopy. It was shown that enhancement (3–5 times) of the Raman spectra is observed in the region of gold nanoparticle aggregates, and this predetermines the potential of such materials as supports for surface-enhanced Raman spectroscopy.  相似文献   

14.
Nie B  Masyuko RN  Bohn PW 《The Analyst》2012,137(6):1421-1427
Applying complementary experiments, like laser desorption-ionization mass spectrometry (LDI-MS) and confocal surface-enhanced Raman microscopy, to the same physical sample location has the potential to elucidate the behavior of complex chemical and biochemical systems in ways that are not available to either method applied in isolation. In these experiments surface-enhanced Raman scattering (SERS) and LDI-MS are applied to the same sample spot using a common structure, deposited Ag colloids, both as ionization matrix and simultaneously as enhancing media for surface-enhanced Raman scattering of small organic molecules, dyes and lipids, and the behavior is compared. Three compounds-p-aminothiophenol (ATP), rhodamine 6G and cholesterol-which exhibit different strengths of interaction with Ag are examined in detail by correlated SERS and LDI-MS. The related mechanisms of nanoparticle-assisted desorption-ionization and Raman enhancement are explored by correlating mass and Raman spectra. The correlated spectra highlight the manner in which the different test compounds interact with plasmonic metal nanostructures. These coupled studies yield new insight into the transition of analyte from the metal-solution interface to gaseous ions, including, in the case of organothiols, a rich set of mixed clusters that provide chemical insight into the ion formation process.  相似文献   

15.
张普  卫怡  蔡俊  陈艳霞  田中群 《催化学报》2016,(7):1156-1165
电化学 Stark效应是指电极溶液界面的吸附物或金属-吸附物之间的化学键的振动频率随电极电势而发生变化的现象.研究该效应,可以更好地理解吸附物与基底的相互作用(如吸附构型、吸附取向和覆盖度等随电位的变化),也可反过来推断电极基底的电子构型及其随电势的变化规律,对理解电化学双电层的结构以及电催化反应的构效关系都很有帮助.多年以来,电极表面吸附 CO的电化学 Stark效应广受关注,是由于 CO为很多小分子氧化的中间产物,研究 CO的谱学行为,可加深对 CO以及其它能产生 CO中间物有机小分子的电催化氧化机理和动力学的理解;另一方面, CO与过渡金属之间普遍存在s给电子以及p反馈电子作用,因此 CO也可作为探针分子,通过考察 COad以及 M–COad的振动频率的变化,可推断相应条件下基底的电子与几何结构等信息.
  本文使用电化学原位表面增强拉曼技术,在一个大的电势范围内考察了 Au@Pd纳米粒子薄膜电极上饱和吸附 CO的振动光谱行为,以期更好地理解 COad与基底的成键作用与电极电势之间的关系.由于纯 Pd电极表面的拉曼信号太弱,实验使用具有核壳结构的 Au@Pd纳米粒子薄膜作为模型电极,并利用 Au核的拉曼增强特性.宽广的电势范围约–1.5到0.55V vs. NHE,通过使用酸性、中性以及碱性电解质得以实现.实验考察的电势上限由 COad氧化起始电位决定,而下限由强烈氢析干扰测量所限制.结果表明,在检测的电势范围内, C–OM(M指在电极表面的桥式吸附CO和穴位吸附 CO所形成的谱带重叠)和 Pd–COM键的振动频率可以分为三段: dνC–OM/dE在–1.5~–1.2 V范围内是185~207 cm–1/V,在–1.2~–0.15 V是83~84 cm–1/V,在–0.2~0.55 V是43 cm–1/V;而 dνPd–COM/dE在–1.5~–1.2 V范围内是–10~–8 cm–1/V,在–1.2~–0.15 V是–31~–30 cm–1/V,在–0.2~0.55 V是–15 cm–1/V.与同时记录的极化曲线对比,认为在中性和碱性介质中所观察到 dνC–OM/dE在–1.2 V附近的急剧变化与电极表面发生了强烈的析氢反应有关.另外,结合密度泛函理论模型计算,认为共吸附的 H减少了 COad从桥式构型到穴位构型的转变,在酸性介质中这种变化不明显,可能是由于对应的电势较高,桥式吸附的 CO比例越大,桥式向穴位的转变本身相对较少.  相似文献   

16.
The adsorption of l-histidine on gold (Au) and silver (Ag) nanoparticle surfaces has been comparatively analyzed by means of surface-enhanced Raman scattering (SERS). The SERS spectra of l-histidine on Ag were found to be quite different from those on Au, indicating dissimilar adsorption structures depending on metal substrates. Most peaks of l-histidine on Ag appeared to be due to coordination via the carboxylate (COO(-)) group with an imidazole ring of fairly upright geometry, whereas on Au it was assumed to adsorb with a rather flat geometry. A density functional theory (DFT) calculation was performed at the level of B3LYP/LANL2DZ to estimate the energetic stability of the binding of the imidazole ring and the carboxylate group of l-histidine with the Ag and Au atoms, respectively. Based on the DFT calculation, the carboxylate group of l-histidine was predicted to bind more favorably to Ag than to Au, and this was in line with our SERS spectral analysis.  相似文献   

17.
The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing.  相似文献   

18.
In this work, the role of nanoparticle surface charge in surface-enhanced Raman scattering (SERS) is examined for the common case of measurements made in colloidal solutions of Ag and Au. Average SERS intensities obtained for several analytes (salicylic acid, pyridine, and 2-naphthalenethiol) on Ag and Au colloids are correlated with the pH and zeta potential (zeta) values of the nanoparticle solutions from which they were recorded. The consequence of the electrostatic interaction between the analyte and the metallic nanoparticle is stressed. The zeta potentials of three commonly used colloidal solutions are reported as a function of pH, and a discussion is given on how these influence SERS intensity. Also examined is the importance of nanoparticle aggregation (and colloidal solution collapse) in determining SERS intensities, and how this varies with the pH of the solution. The results show that SERS enhancement is highest at zeta potential values where the colloidal nanoparticle solutions are most stable and where the electrostatic repulsion between the particles and the analyte molecules is minimized. These results suggest some important criteria for consideration in all SERS measurements and also provide important insights into the problem of predicting SERS activities for different molecular systems.  相似文献   

19.
We report a simple method for preparing three different SERS-active substrates. Concentrated hydrazine solution as the reducing agent and tellurium dioxide as the precursor were used to prepare Te nanowires (NWs). The as-prepared Te NWs have an average length of 547.7 +/- 111.6 nm and an average width of 15.1 +/- 2.7 nm. Through the reaction of Te NWs with sodium tetrachloroaurate in the presence of hexadecyltrimethylammonium bromide (CTAB) over reaction times of 10, 20, and 60 min, gold-tellurium nanodumbbells, gold-tellurium nanopeapods, and gold pearl-necklace nanomaterials (Au PNNs) were obtained, respectively. By controlling the reaction time, the distance between adjacent gold nanoparticles (Au NPs) in each Te nanowire was tunable, allowing us to investigate its effect on the SERS signals. Having shorter distances among Au NPs (greater electromagnetic fields), the Au PNNs provided a reproducible enhancement factor of 5.6 x 10(9).  相似文献   

20.
The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported. Figure Light scattering apparatus used to detect bacteria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号