首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
We consider the separable nonlinear and strictly convex single-commodity network flow problem (SSCNFP). We develop a computational scheme for generating a primal feasible solution from any Lagrangian dual vector; this is referred to as “early primal recovery”. It is motivated by the desire to obtain a primal feasible vector before convergence of a Lagrangian scheme; such a vector is not available from a Lagrangian dual vector unless it is optimal. The scheme is constructed such that if we apply it from a sequence of Lagrangian dual vectors that converge to an optimal one, then the resulting primal (feasible) vectors converge to the unique optimal primal flow vector. It is therefore also a convergent Lagrangian heuristic, akin to those primarily devised within the field of combinatorial optimization but with the contrasting and striking advantage that it is guaranteed to yield a primal optimal solution in the limit. Thereby we also gain access to a new stopping criterion for any Lagrangian dual algorithm for the problem, which is of interest in particular if the SSCNFP arises as a subproblem in a more complex model. We construct instances of convergent Lagrangian heuristics that are based on graph searches within the residual graph, and therefore are efficiently implementable; in particular we consider two shortest path based heuristics that are based on the optimality conditions of the original problem. Numerical experiments report on the relative efficiency and accuracy of the various schemes.  相似文献   

2.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

3.
We consider a primal optimization problem in a reflexive Banach space and a duality scheme via generalized augmented Lagrangians. For solving the dual problem (in a Hilbert space), we introduce and analyze a new parameterized Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty. Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the stepsize gives rise to a variant of IMSg which has finite termination.  相似文献   

4.
《Optimization》2012,61(8):1139-1151
Quadratically constrained quadratic programming is an important class of optimization problems. We consider the case with one quadratic constraint. Since both the objective function and its constraint can be neither convex nor concave, it is also known as the ‘generalized trust region subproblem.’ The theory and algorithms for this problem have been well studied under the Slater condition. In this article, we analyse the duality property between the primal problem and its Lagrangian dual problem, and discuss the attainability of the optimal primal solution without the Slater condition. The relations between the Lagrangian dual and semidefinite programming dual is also given.  相似文献   

5.
This contribution is concerned with goal–oriented r-adaptivity based on energy minimization principles for the primal and the dual problem. We obtain a material residual of the primal and of the dual problem, which are indicators for non–optimal finite element meshes. For goal–oriented r-adaptivity we have to optimize the mesh with respect to the dual solution, because the error of a local quantity of interest depends on the error in the corresponding dual solution. We use the material residual of the primal and dual problem in order to obtain a procedure for mesh optimization with respect to a local quantity of interest. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper we introduce a new methodology to adjust link capacities in circuit switched networks taking into account the costing policy and reliability considerations. This methodology, which is an extension of previous work on reliability evaluation using routing models, is based on a cyclic decomposition algorithm which alternates between a routing subproblem and a link capacity adjustment subproblem. The proposed procedure, which is shown to converge to a global optimum for the dimensioning/routing problem, has been tested on a 14 undirected arc problem for various levels of link failure probability. The numerical results are extremely satisfactory and they demonstrate the usefulness of the proposed method for proper network dimensioning.  相似文献   

7.
The Revised Primal Simplex algorithm, in its simplest form, has no defence against degeneracy. Various forms of the perturbation method are usually effective, but most offer no guarantee of avoiding all degeneracy, and can lead to numerical difficulties. This paper presents a method that avoids cycling and circling by taking a dual approach.The degenerate subproblem consists of all the original variables, but only the degenerate transformed constraints. The current primal objective, which may be mixed, is used. This subproblem may be solved using the dual simplex algorithm, starting from the current dual infeasible solution, and with a zero dual objective. If the dual algorithm terminates optimally then the whole problem is optimal (subject to primal feasibility). Otherwise the final solution provides a non-basic direction which improves the value of the mixed primal objective and moves away from the degenerate vertex. A purification algorithm then renders the solution basic and further improves the mixed objective.  相似文献   

8.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition that eliminates the need for using the Benders or Dantzig-Wolfe master problem. It is a generalization of the Brown-Robinson method for a finite matrix game and can also be considered as a generalization of the Kornai-Liptak method. It is based on the subproblem phase in cross decomposition, where we iterate between the dual subproblem and the primal subproblem. As input to the dual subproblem we use the average of a part of all dual solutions of the primal subproblem, and as input to the primal subproblem we use the average of a part of all primal solutions of the dual subproblem. In this paper we give a new proof of convergence for this procedure. Previously convergence has only been shown for the application to a special separable case (which covers the Kornai-Liptak method), by showing equivalence to the Brown-Robinson method.  相似文献   

9.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition, that eliminates the need for using the Benders or Dantzig-Wolfe master problems. As input to the dual subproblem the average of a part of all known dual solutions of the primal subproblem is used, and as input to the primal subproblem the average of a part of all known primal solutions of the dual subproblem. In this paper we study the lower bounds on the optimal objective function value of (linear) pure integer programming problems obtainable by the application of mean value cross decomposition, and find that this approach can be used to get lower bounds ranging from the bound obtained by the LP-relaxation to the bound obtained by the Lagrangean dual. We examplify by applying the technique to the clustering problem and give some preliminary computational results.  相似文献   

10.
We seek to develop network algorithms for function computation in sensor networks. Specifically, we want dynamic joint aggregation, routing, and scheduling algorithms that have analytically provable performance benefits due to in-network computation as compared to simple data forwarding. To this end, we define a class of functions, the Fully-Multiplexible functions, which includes several functions such as parity, MAX, and kth-order statistics. For such functions we characterize the maximum achievable refresh rate of the network in terms of an underlying graph primitive, the min-mincut. In acyclic wireline networks we show that the maximum refresh rate is achievable by a simple algorithm that is dynamic, distributed, and only dependent on local information. In the case of wireless networks we provide a MaxWeight-like algorithm with dynamic flow-splitting, which is shown to be throughput-optimal.  相似文献   

11.
We apply a modified subgradient algorithm (MSG) for solving the dual of a nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp augmented Lagrangian. A desirable feature of this method is primal convergence, which means that every accumulation point of a primal sequence (which is automatically generated during the process), is a primal solution. This feature is not true in general for available variants of MSG. We propose here two new variants of MSG which enjoy both primal and dual convergence, as long as the dual optimal set is nonempty. These variants have a very simple choice for the stepsizes. Moreover, we also establish primal convergence when the dual optimal set is empty. Finally, our second variant of MSG converges in a finite number of steps.  相似文献   

12.
《Optimization》2012,61(5-6):495-516
For optimization problems that are structured both with respect to the constraints and with respect to the variables, it is possible to use primal–dual solution approaches, based on decomposition principles. One can construct a primal subproblem, by fixing some variables, and a dual subproblem, by relaxing some constraints and king their Lagrange multipliers, so that both these problems are much easier to solve than the original problem. We study methods based on these subproblems, that do not include the difficult Benders or Dantzig-Wolfe master problems, namely primal–dual subgradient optimization methods, mean value cross decomposition, and several comtbinations of the different techniques. In this paper, these solution approaches are applied to the well-known uncapacitated facility location problem. Computational tests show that some combination methods yield near-optimal solutions quicker than the classical dual ascent method of Erlenkotter  相似文献   

13.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

14.
“Classical” First Order (FO) algorithms of convex optimization, such as Mirror Descent algorithm or Nesterov’s optimal algorithm of smooth convex optimization, are well known to have optimal (theoretical) complexity estimates which do not depend on the problem dimension. However, to attain the optimality, the domain of the problem should admit a “good proximal setup”. The latter essentially means that (1) the problem domain should satisfy certain geometric conditions of “favorable geometry”, and (2) the practical use of these methods is conditioned by our ability to compute at a moderate cost proximal transformation at each iteration. More often than not these two conditions are satisfied in optimization problems arising in computational learning, what explains why proximal type FO methods recently became methods of choice when solving various learning problems. Yet, they meet their limits in several important problems such as multi-task learning with large number of tasks, where the problem domain does not exhibit favorable geometry, and learning and matrix completion problems with nuclear norm constraint, when the numerical cost of computing proximal transformation becomes prohibitive in large-scale problems. We propose a novel approach to solving nonsmooth optimization problems arising in learning applications where Fenchel-type representation of the objective function is available. The approach is based on applying FO algorithms to the dual problem and using the accuracy certificates supplied by the method to recover the primal solution. While suboptimal in terms of accuracy guaranties, the proposed approach does not rely upon “good proximal setup” for the primal problem but requires the problem domain to admit a Linear Optimization oracle—the ability to efficiently maximize a linear form on the domain of the primal problem.  相似文献   

15.
After a brief introduction to Jordan algebras, we present a primal–dual interior-point algorithm for second-order conic optimization that uses full Nesterov–Todd steps; no line searches are required. The number of iterations of the algorithm coincides with the currently best iteration bound for second-order conic optimization. We also generalize an infeasible interior-point method for linear optimization to second-order conic optimization. As usual for infeasible interior-point methods, the starting point depends on a positive number. The algorithm either finds a solution in a finite number of iterations or determines that the primal–dual problem pair has no optimal solution with vanishing duality gap.  相似文献   

16.
We study the dual power management problem in wireless sensor networks. Given a wireless sensor network with two possible power levels (heigh and low) for each sensor, the problem consists in minimizing the number of sensors assigned heigh power while ensuring the connectivity of the network. We formulate the problem by a binary integer programming model to minimize the total power consumption. Since the problem is NP-complete, we provide an iterative approximation based on iterative methods in combinatorial optimization. We solve the separation subproblem as a minimum spanning tree.  相似文献   

17.
In this paper, we consider the duty scheduling of sensor activities in wireless sensor networks to maximize the lifetime. We address full target coverage problems contemplating sensors used for sensing data and transmit it to the base station through multi-hop communication as well as sensors used only for communication purposes. Subsets of sensors (also called covers) are generated. Those covers are able to satisfy the coverage requirements as well as the connection to the base station. Thus, maximum lifetime can be obtained by identifying the optimal covers and allocate them an operation time. The problem is solved through a column generation approach decomposed in a master problem used to allocate the optimal time interval during which covers are used and in a pricing subproblem used to identify the covers leading to maximum lifetime. Additionally, Branch-and-Cut based on Benders’ decomposition and constraint programming approaches are used to solve the pricing subproblem. The approach is tested on randomly generated instances. The computational results demonstrate the efficiency of the proposed approach to solve the maximum network lifetime problem in wireless sensor networks with up to 500 sensors.  相似文献   

18.
We propose an alternating direction method of multiplier (ADMM) for the unilateral (frictionless) contact problem with an optimal parameter selection. We first introduce an auxiliary unknown to seprate the linear elasticity subproblem from the unilateral contact condition. Then an alternating direction is applied to the corresponding augmented Lagrangian. By eliminating the primal and auxiliary unknowns, at the discrete level, we derive a pure dual algorithm, starting point for the convergence analysis and the optimal parameter approximation. Numerical experiments are proposed to illustrate the efficiency of the proposed (optimal) penalty parameter selection method.  相似文献   

19.
In the conic optimization problems, it is well-known that a positive duality gap may occur, and that solving such a problem is numerically difficult or unstable. For such a case, we propose a facial reduction algorithm to find a primal–dual pair of conic optimization problems having the zero duality gap and the optimal value equal to one of the original primal or dual problems. The conic expansion approach is also known as a method to find such a primal–dual pair, and in this paper we clarify the relationship between our facial reduction algorithm and the conic expansion approach. Our analysis shows that, although they can be regarded as dual to each other, our facial reduction algorithm has ability to produce a finer sequence of faces of the cone including the feasible region. A simple proof of the convergence of our facial reduction algorithm for the conic optimization is presented. We also observe that our facial reduction algorithm has a practical impact by showing numerical experiments for graph partition problems; our facial reduction algorithm in fact enhances the numerical stability in those problems.  相似文献   

20.
This is a summary of the authors PhD thesis supervised by Hervé Rivano and defended on 29 October 2009 at the Université de Nice-Sophia Antipolis. The thesis is written in French and is available from . This work deals with the optimization of the capacity of wireless mesh networks, defined as the throughput offered to each flow. We develop optimization models integrating the cross-layer characteristics of radio communications. The joint routing and scheduling is studied and solved using column generation. A linear formulation focusing on the transport capacity available on the network cuts is derived. We prove the equivalence of the models, and adapt the resolution method into a cross line and column generation process. Thorough tests, a contention area located around the gateways which constraints the capacity is highlighted. These results are applied to a quantitative study of the effects of acknowledgments on the capacity. Finally, a stability study of a protocol routing a traffic injected arbitrarily is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号