首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Cr doped CdO thin films were deposited on glass substrates by reactive DC magnetron sputtering with varying film thickness from 250 to 400 nm. XRD studies reveal that the films exhibit cubic structure with preferred orientation along the (2 0 0) plane. The optical transmittance of the films decreases from 92 to 72%, whereas the optical energy band gap of the films decreased from 2.88 to 2.78 eV with increasing film thickness. The Wemple–DiDomenico single oscillator model has been used to evaluate the optical dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), static refractive index (no) and high frequency dielectric constant (ε). The nonlinear optical parameters such as optical susceptibility (χ(1)), third order nonlinear optical susceptibility (χ(3)) and nonlinear refractive index (n2) of the films were also determined.  相似文献   

2.
CdFe2O4 thin films of different thicknesses were deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The microstructure parameters, crystallite size, and microstrain were calculated. It is observed that both the crystallite size increases and microstrain increase with increasing with the film thickness. The fundamental optical parameters like absorption coefficient and optical band gap are calculated in the strong absorption region of transmittance and reflectance spectrum. The refractive indices have been evaluated in terms of the envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index can be extrapolated by the Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. The refractive index, n, increases on increasing the film thickness up to 733 nm and the variation of n with higher thickness lies within the experimental errors.  相似文献   

3.
Thin films of SnO2 were deposited by RF-magnetron sputtering on quartz substrates at room temperature in an environment of Ar and O2. The XRD pattern shows amorphous nature of the as-deposited films. The optical properties were studied using the reflectance and transmittance spectra. The estimated optical band gap (Eg) values increase from 4.15 to 4.3 eV as the Ar gas content decreases in the process gas environment. The refractive index exhibits an oscillatory behavior that is strongly dependent on the sputtering gas environment. The Urbach energy is found to decrease with increase in band gap. The band gap is found to decrease on annealing the film. The role of oxygen defects is explored in explaining the variation of optical parameters.  相似文献   

4.
Glasses having composition (B2O3)25 (PbO)70 (Al2O3)5 (Sm2O3)x ,where x=0, 0.5, 1, 2, 3 and 5 g were prepared using the normal melt quench technique. Spectral reflectance and transmittance at normal incidence of the glass samples are recorded with a spectrophotometer in the spectral range 220–2200 nm. These measured values are introduced into analytical expressions to calculate the real and imaginary parts of the refractive indices. Wemple–DiDomenico single oscillator model and one-term Sellmeier dispersion relations are used to model the real refractive indices. Dispersion parameters such as: single oscillator energy, dispersion energy, lattice oscillating strength, average oscillator wavelength, average oscillator strength and Abbe's number are deduced and compared. Absorption dispersion parameters such as: Fermi energy, optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter are calculated. Effects of doping Sm2O3 on these linear optical parameters are investigated and interpreted.  相似文献   

5.
CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E0 and dispersion energy Ed of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.  相似文献   

6.
Amorphous gallium nitride (a-GaN) thin films were deposited on glass substrate by electron beam evaporation technique at room temperature and high vacuum using N 2 as carrier gas. The structural properties of the films was studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). It was clear from XRD spectra and SEM study that the GaN thin films were amorphous. The absorbance, transmittance and reflectance spectra of these films were measured in the wavelength range of 300–2200 nm. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct band gap of E g = 3:1 eV. The data analysis allowed the determination of the dispersive optical parameters by calculating the refractive index. The oscillator energy E 0 and the dispersion energy E d, which is a measure of the average strength of inter-band optical transition or the oscillator strength, were determined. Electrical conductivity of a-GaN was measured in a different range of temperatures. Then, activation energy of a-GaN thin films was calculated which equalled E a = 0:434 eV.  相似文献   

7.
In this study, effect of indium incorporation on the optical properties is investigated for the spray pyrolyzed onto glass substrates at 275°C substrate temperature undoped and indium doped Cd0.22Zn0.78S thin films. The average optical transmittance of all the films was over 77% in the wavelength range between 450 and 800 nm. The optical band gap energies of the thin films have been investigated by the measurement of the optical absorbance as a function of wavelength. The optical absorption studies reveal that the transitions are direct band gaps of 3.02 and 3.05 eV for undoped and doped indium Cd0.22Zn0.78S thin films, respectively. The Urbach tail parameter and optical constants such as refractive index, extinction coefficient, and dielectric constants were calculated for these films. The dispersion parameters such as single-oscillator energy and dispersive energy were discussed in terms oft he single-oscillator Wemple—DiDomenico model.  相似文献   

8.
The optical properties of ethylene vinyl acetate (EVA) film have been studied. The effects of gamma irradiations on the optical spectrum of EVA films have been investigated using spectrophotometric measurements of reflectance and transmittance in the wavelength range 200–1100 nm. The absorption spectra were recorded in the UV–vis region for the unirradiated and irradiated films (from 0 to 50 kGy). Optical constants such as refractive index (n), extinction coefficient (K), and complex dielectric constant have been determined, as well as the optical dispersion parameters and high frequency dielectric constants. A large dependence of the fundamental optical constants on the irradiation dose was noticed. On irradiation, a higher refractive index was obtained as compared with that for unirradiated film. The dispersion parameters, such as E 0 (single‐oscillator energy), E d (dispersive energy), and M ?1 and M ?3 (moments), are discussed in terms of the single‐oscillator Wemple–DiDomenico model.  相似文献   

9.
In this work, a poly(o-toluidine) “POT” was synthesized by chemical oxidative polymerization method in aqueous media. High uniform and good adhesion thin films of POT have been successfully deposited by the spin coating technique. The films were characterized by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The XRD pattern of the POT shows the semi-crystalline nature of the films. FTIR studies show the information of functional groups in POT. The optical transmittance and reflectance of POT film was measured in the 200–2500 nm wavelength range. The absorption coefficient analysis shows that the optical band gaps of POT film are direct allowed transition band gaps with 1.2 and 2.6 eV. Other optical absorption parameters such as extinction molar coefficient, oscillator strength and electric dipole strength were also calculated. The dispersion parameters were determined and discussed based on the single oscillator model. According to the analysis of dispersion curves some important parameters such as dispersion energy (Ed), oscillator energy (Eo), high frequency dielectric constant (ε) and lattice dielectric constant (εL) were also evaluated. Discussion of the obtained results and their comparison with the previous published data were also given. The obtained desirable results of POT thin film can be useful for the optoelectronic applications.  相似文献   

10.
We investigated the influence of lithium potassium zirconate (LiKZrO3) nanoparticles on the electrical properties and structural characteristics of poly(vinyl alcohol) (PVA) films. PVA/LiKZrO3 nanocomposite films were prepared by casting of aqueous solutions with varying LiKZrO3 content (0.5, 1.0, and 2.0 wt.%). The dielectric constant (ε′), dielectric loss (ε″), AC conductivity (σac), dielectric loss tangent (tan δ), and electric modulus (M′ and M″) of the nanocomposite films were measured over a range of frequencies at ambient temperature. The results show increases in σac and M′ with frequency, whereas ε′, ε″, and tan δ decreased with increasing frequency. The films were also characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) techniques. DSC and XRD revealed the nature of LiKZrO3 nanoparticle interaction with the PVA matrix. TGA analysis revealed an increase in thermal stability of the nanocomposites with increasing nanoparticle concentration. Scanning electron microscopy confirmed uniform dispersion of LiKZrO3 nanoparticles in the PVA matrix.  相似文献   

11.
Rare-earth elements (REEs) as Tm+3, Er+3, Yb+3 and Nd+3 have a significant optical photon emission. Therefore, Films of PMMA doped with 5?wt.% of NdCl3, TmCl3, ErCl3 or YbCl3 were prepared using the casting technique. FTIR of the prepared films has been studied. The optical and dispersion behavior of all doped samples have been investigated. The reflectance (R) and the transmittance (T) were measured in the wavelength range of 200–2500?nm. FTIR of all PMMA reveals that, REEs addition to PMMA samples creates new transmission peaks C=O groups and a decrease in the intensity of the absorption band of C–O groups has been obtained. The results showed the dependency of the refractive index and energy gap on the REE electronic transitions nature. The obtained results suggest strongly the applicability of these PMMA derivatives in improving the performance of the polymer optical fiber (POF).  相似文献   

12.
-5-Sulfono-7-(4-x phenyl azo)-8-hydroxy quinoline (SAHQ)-x ligands, x = NO2 or CH3 or Cl have polycrystalline structure in as synthesized condition. Thermally evaporated thin films of SAHQ-x have crystal structure depending on the substitution group; SAHQ-NO2 and SAHQ-Cl films have nano-crystalline structure with different degree of crystallinity and SAHQ-CH3 film has amorphous structure. The changes in optical functions and therefore optical constants with substitution group variation have been calculated by using spectrophotometer measurements of the transmittance and reflectance at nearly normal incidence of light in the wavelength range 200–2500 nm. Substitution group variation influences the refractive index, dispersion parameters, optical functions and bond length of SAHQ. It has no influence on mobility, relaxation time and plasma frequency of charge carriers. The obtained optical energy gaps for SAHQ-x ligands, x = NO2 or CH3 or Cl are 1.89, 2 and 2eV, respectively.  相似文献   

13.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition.  相似文献   

14.
In this study, Titanium (IV) Oxide (TiO2) film has been prepared and characterized by X-ray diffraction (XRD). The XRD pattern of TiO2 film of anatase phase exhibit very sharp peaks at 25° and 47.85°. According to Scherrer??s formula the grain size of anatase (101) phase TiO2 nananoparticle is 38.5 nm. The optical properties and constants of TiO2 film of thickness (4 ??m) have been investigated at room temperature. The transmittance, reflectance and absorbance spectra are measured in the wavelength range (340?C900 nm). Optical constants of TiO2 film are derived from the transmission spectra and the refractive index dispersion of the film. The oscillator energy, E 0 dispersion energy, E d , the static refractive index, n 0, and other parameters have been determined by the single oscillator Wemple-DiDomenico method. This film can be used in the form of thin film in dye-sensitized solar cells.  相似文献   

15.
The structural and optical properties of as-deposited and γ-rays irradiated 2-(2,3-dihydro-1,5dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile (DOPNA) thin films have been reported. The structural properties of as-deposited and γ-rays irradiated DOPNA thin films are characterized by Fourier transformation infrared, X-ray diffraction and transmission electron microscope techniques. The transmittance, T(λ), and reflectance, R(λ), are measured at the normal incidence of light by a double beam spectrophotometer in the wavelength range 200-2200 nm. The refractive and absorption indices have been calculated. The dispersion parameters such as dispersion energy, oscillator energy and dielectric constant at high frequency are evaluated. The data of the absorption coefficient are analyzed in order to determine the type of inter-band electronic transitions and the optical band gap of the films. Other optical absorption parameters, namely, the extinction molar coefficient, oscillator strength and the electric dipole strength, are also calculated.  相似文献   

16.
The optical properties of the Bridgman method grown Ga4Se3S crystals have been investigated by means of room temperature, transmittance and reflectance spectral analysis. The optical data have revealed an indirect allowed transition band gap of 2.08 eV. The room temperature refractive index, which was calculated from the reflectance and transmittance data, allowed the identification of the dispersion and oscillator energies, static dielectric constant and static refractive index as 21.08 and 3.85 eV, 6.48 and 2.55, respectively.  相似文献   

17.
A synthetic route to the asymmetric octasubstituted metal-free phthalocyanines H2Pcs (3-8) has been developed. They contain a combination of 2(3),16(17)-Tetra(2-ethyl-1-hexyl) and 9(10),23(24)-tetra(n-hexyl) as substituent groups in the peripheral positions. Thin films of the target asymmetric substituted “ABAB-Type” indium phthalocyanine chloride complex InPcCl 9, have been also fabricated for the first time, with different thickness (105-350 nm) using thermal evaporation technique. The structural and optical properties of the films have been investigated. The material in powder form showed a polycrystalline nature with triclinic structure. Miller indices, hkl, values for each diffraction line in X-ray diffraction (XRD) spectrum were calculated. The as-deposited films exhibited also a crystalline nature with a preferred orientation of growth. The scanning electron microscope showed the nano-structure property of the deposited films. The optical properties of the films are studied by the spectrophotometric measurements of the transmittance, T and the reflectance, R determined at the normal incident of the light in the spectral range 200-2500 nm. The refractive and absorption indices of the films are calculated and are found to be independent of film thickness of 105-350 nm. Different dispersion and absorption parameters are determined for the films.  相似文献   

18.
SnO2 thin films doped with various manganese concentrations were prepared on glass substrates by sol–gel dip coating method. The decomposition procedure of compounds produced by alcoholysis reactions of tin and manganese chlorides was studied by thermogravimetric analysis (TGA). The effects of Mn doping on structural, morphological, electrical and optical properties of prepared films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Hall effect measurement, Fourier Transform Infrared (FTIR) spectral analysis, UV–Vis spectrophotometry, and photoluminescence (PL) spectroscopy. The results of the X-ray diffraction show that the samples are crystalline with a tetragonal rutile structure and the grain size decreases with increasing the doping concentration. The SEM and AFM images demonstrate that the surface morphology of the films was affected from the manganese incorporation. The Sn1?x Mn x O2 thin films exhibited electrically p-type behavior in doping level above x=0.035 and electrical resistivity increases with increase in Mn doping. The optical transmission spectra show a shift in the position of absorption edge towards higher wavelength (lower energy). The optical constants (refractive index and extinction coefficient) and the film thickness were determined by spectral transmittance and using a numerical approximation method. The oscillator and dispersion energies were calculated using the Wemple–DiDomenico dispersion model. The estimated optical band gap is found to decrease with higher manganese doping. The room-temperature PL measurements illustrate the decrease in intensity of the emission lines when content of Mn is increased in Mn-doped SnO2 thin films.  相似文献   

19.
Thin films of InSe were prepared by thermal evaporation technique. The as-deposited films have nano-scale crystalline nature and the annealing enhanced the degree of crystallinity. The optical properties of nanocrystalline thin films of InSe were studied using spectrophotometric measurements of transmittance, T, and reflectance, R, at normal incidence of light in the wavelength range 200–2500 nm. The optical constants (refractive index, n, and absorption index, k) were calculated using a computer program based on Murmann's exact equations. The calculated optical constants are independent of the film thickness. The optical dispersion parameters have been analysed by single oscillator model. The type of transition in InSe films is indirect allowed with a value of energy gap equals to 1.10 eV, which increased to 1.23 eV upon annealing.  相似文献   

20.
Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E0, the dispersion energy Ed, the average interband oscillator wavelength λ0, the average oscillator strength S0, the refractive index dispersion parameter (E0/S0), the chemical bonding quantity β, and the long wavelength refractive index n were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E0/S0) increases and the chemical bonding quantity β decreases in the BTO and BTO:In films compared with those of bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号