首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The separation and determination of hydrophilic basic compounds are of great importance in many fields including clinical and biological research, pharmaceutical development and forensic analysis. However, the most widely used analytical separation technique in these disciplines, reversed-phase liquid chromatography (RPLC), usually does not provide sufficient retention for several important classes of highly hydrophilic basic compounds including catecholamines, many drug metabolites and many drugs of abuse. Commonly eluents having little or no organic modifier and/or strong ion pairing agents must be used to achieve sufficient retention and separation. Use of highly aqueous eluents can lead to column failure by dewetting, resulting in poor retention, low selectivity and irreproducibility and slow recovery of performance. The use of a strong ion pairing agent to increase retention renders the separation incompatible with mass spectrometric detection and complicates preparative separations. This paper describes the successful applications of a novel type of silica-based, hyper-crosslinked, sulfonate-modified reversed stationary phase, denoted as (-)SO(3)-HC-C(8)-L, for the separation of highly hydrophilic cations and related compounds by a hydrophobically assisted cation-exchange mechanism. Compared to conventional reversed-phases, the (-)SO(3)-HC-C(8)-L phase showed significantly improved retention and separation selectivity for hydrophilic amines. Concurrently, due to the presence of both cation-exchange and reversed-phase retention mechanisms and the high acid stability of hyper-crosslinked phases, the separation can be optimized by changing the type or concentration of ionic additive or organic modifier, and by varying the column temperature. In addition, gradients generated by programming the concentration of either the ionic additive or the organic modifier can be applied to reduce the analysis time without compromising resolution. Furthermore, remarkably different chromatographic selectivities, especially toward cationic solutes, were observed upon comparing the (-)SO(3)-HC-C(8)-L phase with conventional reversed-phases. We believe that the combination of these two types of stationary phases will be very useful in two-dimensional liquid chromatography.  相似文献   

2.
Two novel sulfonyl-embedded reversed phase materials with sulfonic acid moieties (SO(X)-RP) were prepared by a simple oxidation of two silica-based sulfur-embedded RP-phases (S-RP). The chromatographic behavior of the resultant sulfonyl/sulfonic acid-embedded phase C3-SO(2)-C18/SO(3)H and the sulfonyl-embedded phase C3-SO(2)-C14 e.c. (silanol endcapped) was extensively elucidated with a number of well-established as well as self-assembled column tests. These SO(X)-RP phases were also compared with their corresponding S-RP phases as well as with two commercial carbonyl-containing RP phases (CO-RP) with amide- and urea-embedding. The SO(X)-RP phases were found to exhibit exceptionally high planar recognition ability for polyaromatic analytes at comparable retention times to the investigated CO-RP phases and highly reduced retention compared to the parent, non-oxidized S-RP-materials. The results of this study suggest that the selectivity enhancement observed with the S-oxidized phases is due to sulfonyl-pi and sulfonic acid-pi interactions. Furthermore these novel SO(X)-RP phases proved to be fully applicable under 100% aqueous mobile-phase conditions making them a useful alternative to conventional RP as well as polar-embedded CO-RP phases.  相似文献   

3.
The retention and selectivity of the chromatographic separation of basic (cationic) analytes on a polybutadiene-coated zirconia (PBD-ZrO2) stationary phase have been studied in greater detail than in previous studies. These separations are strongly influenced by the chemistry of the accessible surface of zirconia. In the presence of buffers which contain hard Lewis bases (e.g., phosphate, fluoride, carboxylic acids) zirconia's surface becomes negatively charged due to adsorption of the buffer anion at the hard Lewis acid sites. Consequently, under most conditions (e.g., neutral pH), cationic analytes undergo both hydrophobic and cation-exchange interactions. This mixed-mode retention process generally leads to greater retention factors for cations relative to those on silica-based reversed phases despite the lower surface areas of the zirconia phase, but, more importantly, adsorption of hard Lewis bases can be used to control the chromatographic selectivity for cationic analytes on these zirconia-based stationary phases. In contrast to our prior work, here we show that when mixed-mode retention takes place, both retention and selectivity are easily adjusted by changing the type of hard Lewis base buffer anion, the type of buffer counter-ion (e.g., sodium, potassium, ammonium), the pH, and the ionic strength of the eluent as well as the type and amount of organic modifier.  相似文献   

4.
A mixed-mode reversed-phase/weak cation exchange (RP/WCX) phase has been developed by introducing a small amount of carboxylate functionality into a hydrophobic hyper-crosslinked (HC) platform. This silica-based HC platform was designed to form an extensive polystyrene network completely confined to the particle's surface. The fully connected polymer network prevents the loss of bonded phase, which leads to superior hydrolytic stability of the new phase when compared to conventional silica-based phases. Compared to previously introduced HC phases the added carboxylic groups impart a new weak cation exchange selectivity to the base hydrophobic HC platform. The phase thus prepared shows a mixed-mode retention mechanism, allowing for both neutral organic compounds and bases of a wide polarity range to be simultaneously separated on the same phase under the same conditions. In addition, the new phase offers the flexibility that gradients in organic modifier, pH or ionic competitors can be used to affect the separation of a wide range of solutes. Moreover, the inherent weak acid cation exchange groups allow formic and acetic acid buffers to be used as eluents thereby avoiding the mass spectrometric ionization suppression problems concomitant to the use of non-volatile additives such as strong amine modifiers (e.g. triethylamine) or salts (e.g. NaCl) to elute basic solutes from the strong cation exchange phase which was previously developed in this lab. The use of the new phase for achieving strong retention of rather hydrophilic neurotransmitters and drugs of abuse without the need for ion pairing agents is demonstrated.  相似文献   

5.
The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC – strong anion exchange, Thermo Fisher Scientific IonPac CS10 – strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed log P values of 0.38–0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18 and neutral μPS-DVB resin IonPac NS1-5u, yielding log P values of 0.57 and 0.52, respectively.  相似文献   

6.
The high-performance liquid chromatographic behavior of some basic drugs was studied on a n-octadecylphosphonic acid modified magnesia-zirconia (C18PZM) stationary phase. The effect of mobile phase variables such as methanol content, ionic strength, and pH on their chromatographic behavior was investigated. The retention mechanism of basic drugs on the stationary phase was elucidated. The results indicate that both hydrophobic and cation-exchange interactions contribute to solute retention under most chromatographic conditions. The inherent Br?nsted-acid sites and also the adsorbed Lewis base anionic buffer constituents on accessible ZM surface Lewis acid sites play a role in the retention of ionized solutes by cation-exchange interaction. However, especially at high mobile phase pH, the retention of basic drugs depends mainly on hydrophobic interactions between solutes and support. Separations of the basic drugs on the C18PZM phase by a predominantly reversed-phase retention mode were very promising. The mixed-mode retention feature on this phase, as a result of the adsorbed Lewis base anionic buffer constituents acting as sites for cation-exchange, could also be very useful, e.g. for enhancing the chromatographic selectivity of such analytes. The C18PZM seems to be an excellent alternative to silica-based reversed-phase stationary phase for the separation of strongly basic solutes.  相似文献   

7.
The synthesis and chromatographic characterization of a highly crosslinked self-assembled monolayer (SAM) stationary phase whose acid and thermal stability were significantly improved relative to a sterically protected octadecylsilane (ODS) stationary phase were recently described [B.C. Trammell, L. Ma, H. Luo, D. Jin, M.A. Hillmyer, P.W. Carr, Anal. Chem. 74 (2002) 4634]. Unfortunately, this highly crosslinked SAM phase is much more silanophilic than a conventional sterically protected octadecyl silane phase. 29Si CP-MAS NMR analysis shows that the high concentration of silanol groups in the self-assembled monolayer causes the increased retention and poor peak shape of basic solutes. In this work dimethyl-chloromethyl-phenylethylchlorosilane (DM-CMPES), a silane with only a single reactive silyl chloride group was tested as an alternative to chloromethyl-phenyethyltrichlorosilane (CMPES) as the basis for forming the starting phase. Most importantly this "conventional" silanization step (i.e., a non-SAM silanization) was followed by a Friedel-Crafts reaction using aluminum chloride as the catalyst and styrene heptamer as the multi-valent crosslinker to form the surface DM-CMPES groups into a network polymer which is fully confined and attached to the surface. An octyl (C8) derivative of the hypercrosslinked (HC) dimethyl-chloromethyl-phenylethyl (DM-CMPES) surface-confined stationary phase was synthesized to demonstrate the potential of a Friedel-Crafts based approach to making high efficiency, acid and thermally stable polymerized phases on silica with selectivity closer to conventional aliphatic phases. The stability of the retention factors of these phases under very aggressive conditions (5%, (v/v) trifluoroacetic acid and 150 degrees C) are compared to that of a sterically protected octadecylsilane (ODS) phase. The comparisons show that the long term stability of highly crosslinked DM-CMPES phases in acid is superior to the conventional phase. The HC-C8 phase is even more stable in acid than the HC-styrene heptamer DM-CMPES phase on which it is based. Additionally, the efficiency and peak shape of several prototypical bases under acidic (0.1% TFA, pH 2.0) elution conditions are discussed. The column dynamics and thermodynamic characteristics of the HC-C8 phase were investigated to demonstrate the chromatographic utility of this ultra-stable phase. Inverse size exclusion chromatography and flow studies of the HC-C8 and the sterically protected C18 stationary phases indicate the absence of pore plugging and quite good (nearly 100,000 plates/m) chromatographic efficiency. Further chromatographic investigations show that the HC-C8 stationary phase behaves as a typical reversed phase material. The HC-C8 stationary phase offers unique chromatographic selectivity for certain classes of analytes compared to both alkyl and phenyl bonded phases.  相似文献   

8.
Three n-octadecylphosphonic acid-modified magnesia-zirconia reversed stationary phases (C18PZM) are prepared via the strong Lewis base interactions between organophosphonate and magnesia-zirconia composite. And two of them are end-capped by using trimethylchlorosilane as end-capping agent in different procedures. Stability studies at extreme high pH conditions (pH 9-12) show that both the non-endcapped and endcapped columns are quite stable at pH 12 mobile phase. The reversed-phase liquid chromatographic behavior of three C18PZM stationary phases are comparatively investigated in detail using a variety of basic compounds as probes. The retention of basic compounds on the three phases is studied over a wide range of pHs. And the possible retention mechanisms of basic compounds on the three stationary phases are discussed. The results show that the basic solutes retain by a hydrophobic and cation-exchange interaction mixed mechanism on three stationary phases when they are operated in eluents at pH values near to the pKa of the Brönsted conjugate acid form of the analyte, suggesting that inherent zirconol groups on ZM are not expected to interact with bases via cation-exchange interaction at lower pH. Nonetheless, the non-endcapped phase differs markedly from the edncapped ones in retention and selectivity of basic solutes using eluents at pH 4.1, implying a complex retention mechanism at this pH. The cation-exchange sites under such conditions are more likely due to the adsorbed Lewis base anionic buffer constituents (acetate) on accessible ZM surface sites than the chemisorbed phosphonate. Although the three phases exhibit very similar chromatographic behavior with eluents at pH 10.1, and show in general satisfactory separation of basic compounds and alkaloids studied, the performance for a specific analyte, however, differs largely from column to column.  相似文献   

9.
This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas.  相似文献   

10.
Selectivity of 15 stationary phases was examined, either commercially available or synthesized in-house. The highest selectivity factors were observed for solute molecules having different polarizability on the 3-(pentabromobenzyloxy)propyl phase (PBB), followed by the 2-(1-pyrenyl)ethyl phase (PYE). Selectivity of fluoroalkane 4,4-di(trifluoromethyl)-5,5,6,6,7,7,7-heptafluoroheptyl (F13C9) phase is lowest among all phases for all compounds except for fluorinated ones. Aliphatic octyl (C8) and octadecyl (C18) phases demonstrated considerable selectivity, especially for alkyl compounds. While PBB showed much greater preference for compounds with high polarizability containing heavy atoms than C18 phase, F13C9 phase showed the exactly opposite tendency. These three stationary phases can offer widely different selectivity that can be utilized when one stationary phase fails to provide separation for certain mixtures. The retention and selectivity of solutes in reversed-phase liquid chromatography is related to the mobile phase and the stationary phase effects. The mobile phase effect, related to the hydrophobic cavity formation around non-polar solutes, is assumed to have a dominant effect on retention upon aliphatic stationary phases such as C8, C18. In a common mobile phase significant stationary phase effect can be attributed to dispersion interaction. Highly dispersive stationary phases such as PBB and PYE retain solutes to a significant extent by (attractive) dispersion interaction with the stationary phase ligands, especially for highly dispersive solutes containing aromatic functionality and/or heavy atoms. The contribution of dispersion interaction is shown to be much less on C18 or C8 phases and was even disadvantageous on F13C9 phase. Structural properties of stationary phases are analyzed and confirmed by means of quantitative structure-chromatographic retention (QSRR) study.  相似文献   

11.
A new generation of extremely acid stable "hyper-crosslinked" (HC) phases have been developed with good plate counts for basic drug separations. In our previous work, we successfully developed an approach for synthesizing HC stationary phases on silica substrates using aluminum trichloride catalyzed Friedel-Crafts (F-C) chemistry to improve the stability of silica-based RPLC stationary phases at low pH. However, the performance of basic analytes on these HC phases under acidic conditions was unusually poor compared to that of conventional silica-based C18 phases. The effects of the specific F-C catalysts used and the specific silica substrate on the chromatographic properties of HC phases have been studied. Modified synthetic strategies that give both good observed plate counts for basic analytes under acidic conditions and very good low pH stability without compromising other chromatographic properties of the hyper-crosslinked phases have been developed. Replacement of aluminum trichloride with tin tetrachloride as the catalyst for the F-C chemistry and use of a very high purity silica result in significantly improved plate counts for basic analytes. In formic acid buffered mobile phases, which are highly compatible with electrospray ionization LC-MS, basic analytes showed much better performance on the tin tetrachloride catalyzed HC phases than on any conventional commercial phase tested. The tin tetrachloride catalyzed HC phase is as stable as the original aluminum trichloride catalyzed HC phases, and much more stable than the bench mark acid stable commercial phase.  相似文献   

12.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

13.
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk IL/water values by chromatographic methods is also discussed.  相似文献   

14.
Calixarene‐bonded stationary phases received growing interest in HPLC as stationary phases with special retention characteristics and selectivity. The commercially available unsubstituted and ptert‐butyl‐substituted Caltrex® columns have been intensively studied and characterized in our workgroup. They can be used as reversed phases, yet they support additional interactions. Especially, their steric, polar and ionic properties differ from conventional alkyl‐bonded phases. However, also the hydrophobic interaction shows differences since adsorption and partition interactions on or in a bonded layer of calixarenes are not similar to those of alkyl‐bonded layers. The relative strength of the hydrophobic properties of the stationary phases has been found depending on the methanol concentration of the mobile phase. Generally, the dependencies of their interaction strengths on mobile‐phase conditions, e.g. the change of the intensity of the hydrogen‐bonding abilities with decreasing methanol content, are not similar from phase to phase either. This probably gives calixarene‐bonded stationary phases enhanced suitability for analyses at extreme compositions of the mobile phase. An overview about the synthesis, retention and selectivity properties of Caltrex® columns is given here.  相似文献   

15.
Reversed-phase liquid chromatography using silica-based columns is successfully applied in many separations. However, also some drawbacks exist, i.e. the analysis of basic compounds is often hampered by ionic interaction of the basic analytes with residual silanols present on the silica surface, which results in asymmetrical peaks and irreproducible retention. In this review, options to optimise the LC analysis of basic pharmaceutical compounds are discussed, i.e. eluent optimisation (pH, silanol blockers) and stationary phase optimisation (development of new columns with minimised ionic interactions). The applicability of empirical based, thermodynamically based and test methods based on a retention model to characterise silica-based reversed phase stationary phases, as well as the influence of the eluent composition on the LC analysis of basic substances is described. Finally, the applicability of chemometrical techniques in column classification is shown.  相似文献   

16.
Summary The procedure of polymer coating of preferably inorganic porous particle support materials for LC has been applied to the preparation of a new type of weak cationexchange phases. A special copolymer of butadiene and maleic acid could be immobilized on silica by cross-linking effected with radical starters such as peroxides or γ-radiation. The chromatographic properties of such materials proved to be excellent regarding efficiency, ion-exchange capacity and selectivity, as well as chemical stability also in comparison to other, commercially available, materials. Test measurements were successfully performed with ionic or ionizable inorganic and organic solutes over the entire applicable pH-range of the mobile phase which also contained organic modifiers. A special feature of the new type of cation-exchange phase is the minor contribution of hydrophobic (lipophilic) interaction to the retention mechanism besides the actual ion-exchange process.  相似文献   

17.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxane-bonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50% (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing - and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30% (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1% (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

18.
The suitability of eleven silanol-deactivated reversed phases for the liquid chromatography of erythromycin was investigated. The selectivity and efficiency of each stationary phase were examined. The performance was compared to that of a non-deactivated C18 silica-based reversed-phase material, Hypersil C18 (5 μm). Two types of mobile phases were used, one containing no tetrabutylammonium (TBA) and the other containing TBA. Addition of TBA as a silanol-blocking agent improved the theoretical plate number and symmetry factor of the peaks corresponding to erythromycin A (EA) and erythromycin A enol ether for all the deactivated reversed phases. These results are an indication of the presence of some residual silanol activity in these phases. Separation of erythromycin E and EA was achieved on only two of the eleven phases. The selectivity was always poorer than that obtained in a previously described method using a poly(styrene-divinylbenzene) stationary phase.  相似文献   

19.
The silica-based stationary phases with favorable physical characteristics are the most popular in liquid chromatography. However, there are several problems with silica-based materials: severe peak tailing in the chromatography of basic compounds, non-reproducibility for the same chemistry columns, and limited pH stability. Ionic liquids (ILs) as mobile phase components can reduce peak tailing by masking residual free silanol groups. The chromatographic behavior of some alkaloids from different classes was studied on C18, phenyl, and pentafluorophenyl columns with different kinds and concentrations of ionic liquids as additives to aqueous mobile phases. Ionic liquids with different alkyl substituents on different cations or with different counterions as eluent additives were investigated. The addition of ionic liquids has great effects on the separation of alkaloids: decrease in band tailing, increase in system efficiency, and improved resolution. The retention, separation selectivity, and sequence of alkaloid elution were different when using eluents containing various ILs. The increase of IL concentration caused an increase in silanol blocking, thus conducted to decrease the interaction between alkaloid cations and free silanol groups, and caused a decrease of alkaloids retention, improvement of peak symmetry, and increase of theoretical plate number in most cases. The effect of ILs on stationary phases with different properties was also examined. The different properties of stationary phases resulted in differences in analyte retention, separation selectivity, peak shape, and system efficiency. The best shape of peaks and the highest theoretical plate number for most investigated alkaloids in mobile phases containing IL was obtained on pentafluorophenyl (PFP) phase.  相似文献   

20.
A study of ten silica-based stationary phases and gradient elution conditions to separate dietary folates by reversed-phase HPLC was performed. Alkyl-bonded stationary phases (both conventional and alternative) were found to be the most promising for the separation of different folate monoglutamates in terms of selectivity and peak shape. These phases were better than phenyl-bonded phases which lacked selectivity when separating 10-formyl-folic acid and 5-formyl-tetrahydrofolate. Polar-bonded (cyano) stationary phase showed similar retention characteristics as the conventional alkyl-bonded phases, but ranked below those in terms of peak shape. Overall, alternative stationary phases exhibited slightly higher retention of late-eluted folates and greater retention variability for early-eluting tetrahydrofolate and 5-methyl-tetrahydrofolate. Best selectivity was achieved on alternative polar endcapped Aquasil C18 followed by conventional Synergy MAX C12 and Genesis C18 stationary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号