首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper utilizes molecular-dynamics simulations to investigate the mechanical characteristics of a suspended (10, 10) single-walled carbon nanotube (SWCNT) during atomic force microscopy (AFM) nanoindentation at different temperatures. Spontaneous topological transition of the Stone-Wales (SW) defects is clearly observed in the indentation process. The present results indicate that under AFM-bending deformation, the mechanical properties of the SWCNT, e.g., the bending strength, are dependent on the wrapping angle. In addition, it is also found that the radial dependence of the reduced formation energy of the SW defects is reasonably insensitive only for the small tubes. However, for tube diameters greater than 2.4 nm [corresponding to the (18, 18) CNT], the SW defects tend to be more radius sensitive. The results indicate that the bending strength decreases significantly with increasing temperature. This study also investigates the variation in the mechanical properties of the nanotube with the density of C60 encapsulated within the nanotube at various temperatures. It is found that, at lower temperatures, the bending strength of the C60-filled nanotube increases with C60 density. However, the reverse tendency is observed at higher temperatures. Finally, the "sharpest tip" phenomena between the probe and the tube wall and the elastic recovery of the nanotube during the retraction process are also investigated.  相似文献   

2.
We have investigated the Stone-Wales (SW) rearrangement of pyracyclene (C(14)H(12)) using quantum mechanical molecular modeling. Of particular interest in this study is the effect of an added hydrogen atom on the barriers to SW rearrangement. Hydrogen atoms are found in high abundance during combustion, and their effect upon isomerization of aromatic compounds to more stable species may play an important role in the combustion synthesis of fullerenes. We have calculated the barriers for the SW rearrangement in pyracyclene using density functional theory B3LYP/6-31G(d) and B3LYP/6-311G(d,p). Two mechanisms have been investigated: (i) a mechanism with two identical transition states of C(1) symmetry and a cyclobutyl intermediate and (ii) a mechanism with one transition state containing an sp(3) carbon (J. Am. Chem. Soc. 2003, 125, 5572-5580; Nature 1993, 366, 665-667). We find that the barriers for these mechanisms are 120.0 kcal mol(-1) for the cyclobutyl mechanism and 130.1 kcal mol(-1) for the sp(3) mechanism. Adding a hydrogen atom to the internal bridge carbon atoms of pyracyclene reduces the barrier of the cyclobutyl mechanisms to 67.0 kcal mol(-1) and the sp(3) mechanism to 73.1 kcal mol(-1). The bonding of carbon atoms in pyracyclene is similar to those found in isomers of C(60), and the barriers are low enough so that these reactions can become significant during fullerene synthesis in flames. Adding hydrogen atoms to the external bridge atoms on pyracyclene produces a smaller reduction in the SW barrier and adding hydrogen atoms to nonbridge external carbon atoms results in no reduction of the barrier.  相似文献   

3.
The initial relaxation dynamics of the photoexcited fullerenes C60, C70, C76, C84, C86, and C90 were investigated by dispersion-free femtosecond pump-probe spectroscopy. Under identical excitation conditions, the formation of the lowest excited state slows down for the larger fullerenes. This trend in dynamics, monitored throughout the visible and NIR range, is found to correlate with the number of isomers in accordance with the isomerization mechanism suggested by Stone and Wales. The Stone-Wales isomerization was calculated as thermally inaccessible but photoinduced barrierless. The energy difference of the isomers is in the 1 meV range, and back-isomerization is observed on the picosecond time scale. The characteristic spectrally broad transient absorption of the investigated fullerenes is promising for fast optical gating applications.  相似文献   

4.
Density functional theory (DFT) methods have been applied to study C(32) fullerenes built from four-, five-, and six-membered rings. The relative energies of pure C(32) fullerenes have been evaluated to locate three most stable structures, 32:D(4d) with two squares, 1:D(3) without square and 5:C(s) with one square. Structural analysis reveals that there is a rearrangement pathway between the lowest energy classical isomer 1:D(3) and the lowest energy non-classical isomer 32:D(4d), and 5:C(s) behaves just as an intermediate between them. The kinetic processes of generalized Stone-Wales transformation (GSWT) with four-membered rings have been explored and two distinct reaction mechanisms are determined by all the transition states and intrinsic reaction coordinates with PBE1PBE/6-31G(d) approach for the first time. One mechanism is the concerted reaction with a rotating dimer closed to the cage surface and another is the stepwise reaction with a carbene-like sp(3) structure, whereas the latter is sorted into two paths based on four-membered ring vanishing before or after the formation of the carbene-like structure. It is indicated that there is no absolute preference for any mechanism, which depends on the adaptability of different reactants on the diverse mechanisms. Furthermore, it's found that the interconversion process with the participation of squares is more reactive than the rearrangement between C(60)_I(h) and C(60)_C(2v), implying some potential importance of non-classical small fullerenes in the fullerene isomerization.  相似文献   

5.
Boron nitride nanotubes (BNNTs) have been reported to possess superior water permeation properties. In this work, using molecular dynamics simulations with partial charges, capturing BNNT polarization effects obtained from quantum calculations, we found that Stone-Wales (SW) defects in a (5,5) BNNT result in phase transition of water, i.e., a transition between liquid-like phase and vapor-like phase was observed. The 90 degree rotation of the B-N bond, SW transformation, in an SW-defective (5,5) BNNT results in breaking of hydrogen bonding with neighboring water molecules and leads to the existence of a vapor-like phase near the SW defect. Water transport rate was evaluated by measuring translocation time. Water in an SW-defective (5,5) BNNT has fewer translocation events, longer translocation time, and a higher axial diffusion coefficient compared to water in a nondefective (5,5) BNNT.  相似文献   

6.
The reactivity of 5/7/7/5 (Stone-Wales, SW) defects is compared to that of the pristine sidewalls of (5,5) and (10,0) carbon nanotubes (CNTs) using density functional theory (PBE). Infinite tube models (periodic boundary conditions) are used to investigate the reaction energy for CH(2) addition to the ten [5,6], [5,7], [6,7], and [7,7] C-C junctions resulting from SW rotations of the two unique bonds in (5,5) and (10,0) CNTs. In all cases, at least one of the junctions associated with the SW defects is more highly reactive than the pristine tubes. The orientation of these junctions with respect to the tube axis mainly determines the exothermicity. The [7,7] junctions are not the most reactive sites in SW defects of (5,5) and (10,0) CNTs.  相似文献   

7.
Using bowl shaped carbon intermediates to construct dihedral fullerenes is an advisable method. Assu- ming that cap shaped C21 extends the size through building pentagons and hexagons at the U and V clefts of the brims, a series of homologous carbon intermediates was generated, in which most of the members have been unknown up to now. The joins between these homologous intermediates gave the C3 dihedral series under the restriction of C3 sym- metrical axis. The investigations point out that the stabilities of these fullerenes not only relate to the shapes of cages and the co-planarities of polygons, but also associate with the equalizations of bond lengths and the pentagonal dis- tributions. The stabilities reveal that the pentagonal distribution in cages is not negligible to the Jr delocalization, be- sides the co-planarities of hexagons and pentagons. Analyzing the possible Stone-Wales(SW) rearrangements in those fullerenes with dehydrogenated pyracyclene units(DPUs) can help us to find out the highly stable isomers. Based on the geometrical optimizations, the calculations provided the theoretical chemical shifts of unknown fullerenes and the data reconfirmed the existence of members C78 and C84. The symmetry adaptation analyses for the frontier orbitals support the formative mechanism of consecutive pentagonal and hexagonal fusions, but the simulated routes are more complicated than the pentagon road(PR) mechanism, which include not only C2 but also C3 additive reactions.  相似文献   

8.
Stone-Wales旋转是富勒烯异构化的基本方式,了解其特征和规律对于理解富勒烯和富勒烯衍生物的形成至关重要.本文采用密度泛函理论方法系统研究了富勒烯和富勒烯衍生物的Stone-Wales旋转.结果显示,富勒烯异构体趋向于从高B55键(两个五元环共用的边)结构向低B55结构转化,满足独立五元环原则的结构或具有低B55键数的异构体在热力学上更为有利.相反,对于富勒烯衍生物,具有更多B55的异构体不仅在热力学上更有利,而且从动力学角度讲,从满足独立五元环原则的结构向不满足的结构的转变比相反过程更容易.这些结果可以解释目前的相关实验事实,暗示了富勒烯衍生物可能是先衍生化后异构化而形成.  相似文献   

9.
Nonclassical fullerenes with heptagon(s) and their derivatives have attracted increasing attention, and the studies on them are performing to enrich the chemistry of carbon. Density functional theory calculations are performed on nonclassical fullerenes Cn (n = 46, 48, 50, and 52) to give insight into their structures and stability. The calculated results demonstrate that the classical isomers generally satisfy the pentagon adjacency penalty rule. However, the nonclassical isomers with a heptagon are more energetically favorable than the classical ones with the same number of pentagon–pentagon bonds (B55 bonds), and many of them are even more stable than some classical isomers with fewer B55 bonds. The nonclassical isomers with the lowest energy are higher in energy than the classical ones with the lowest energy, because they have more B55 bonds. Generally, the HOMO–LUMO gaps of the former are larger than those of the latter. The sphericity and asphericity are unable to rationalize the unique stability of the nonclassical fullerenes with a heptagon. The pyramidization angles of the vertices shared by two pentagons and one heptagon are smaller than those of the vertices shared by two pentagons and one hexagon. It is concluded that the strain in the fused pentagons can be released by the adjacent heptagons partly, and consequently, it is a common phenomenon for nonclassical fullerenes to violate the pentagon adjacent penalty rule. These findings are heuristic and conducive to search energetically favorable isomers of Cn, especially as n is 62, 64, 66, and 68, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.

In the present study, the interaction of serine (SER) amino acid (AA) with the pristine and defected carbon nanotubes (CNTs) has been investigated by employing the molecular dynamics (MD) and the density functional theory (DFT) approaches. Furthermore, the potential application of CNTs with and without the Stone-Wales (SW) defects in sensing of SER chirality has been studied. Our results confirm that introducing the chiral l and d SERs (LSER and DSER) exerts a significant effect on the electronic and optical properties of the CNTs with and without the SW defect. According to the MD results, it is observed that for all the structures, the obtained minimum distance is among the SER aliphatic segments and the tube atoms. The calculated structural and electronic properties of pristine and defected CNT are in good agreement with the reported research studies. The results indicate that pyramidalization angles (θp) at C atoms are altered in the presence of the SW defects. The overall increment of θp suggests that the reactivity has increased at the defective regions. In the case of CNT with one SW defect (CNTSW1), the central C–C bond of the SW defect is the most chemically reactive site. Our results establish that pristine CNT is a semiconductor when the LSER and DSER are adsorbed (with the band gap of 0.30 eV and 0.32 eV, respectively). The LSER-adsorbing CNT with two SW defects (CNTSW2) is a semiconductor with a reduced band gap (0.41 eV), while the DSER-adsorbing CNTSW2 is an n-type semiconductor (with a band gap of 0.70 eV). The optical properties are inferred from the dielectric functions of the CNTs. The most remarkable result belongs to the CNTSW2; the imaginary part of the CNTSW2 dielectric function can sensitively distinguish the chirality of the SER amino acid.

  相似文献   

11.
It is shown that a model for assembling fullerenes from polycyclic carbon clusters, supplemented by consideration of the Stone-Wales transformation on open shell hot clusters, predicts the formation of fullerenes with an almost even distribution of pentagonal cells on their surface. The possibility of this transformation on an open shell cluster itself establishes the maximally proper assembling rate and determines its limiting condition.  相似文献   

12.
A novel class of non-classical fullerenes, having pentagon–heptagon pairs, as in azulene, is modeled. The various coverings, sometimes alternating azulenic and benzenic units, are designed by some new sequences of map operations or generalized operations. The hypothetical azulenic fullerenes are characterized by PM3 semiempirical data and POAV1 strain energy SE. Their aromaticity is discussed in the light of several criteria. The HOMA index of aromaticity enabled evaluation of global and local aromaticity of the designed fullerenes.  相似文献   

13.
The aggregation behavior of C60 fullerenes and C60 fullerenes with six symmetrically tethered poly(ethylene oxide) oligomers [(PEO)-6-C60] in aqueous solutions has been studied using implicit solvent molecular dynamics simulations. Our simulations reveal that while the attraction between two (PEO)-6-C60 fullerenes in aqueous solution is stronger and longer range than that between two bare C60 fullerenes, the (PEO)-6-C60 fullerenes do not phase-separate in water but rather aggregate in chain-like clusters at concentrations where unmodified fullerenes completely phase-separate.  相似文献   

14.
We report idealized mode-coupling theory results for the glass transition of ensembles of model fullerenes interacting via phenomenological two-body potentials. Transition lines are found for C60, C70, and C96 in the temperature-density plane. We argue that the observed glass transition behavior is indicative of kinetic arrest that is strongly driven by the interparticle attraction in addition to excluded-volume repulsion. In this respect, these systems differ from most standard glass-forming liquids. They feature arrest that occurs at lower densities and that is stronger than would be expected for repulsion-dominated hard-sphere-like or Lennard-Jones-type systems. The influence of attraction increases with increasing the number of carbon atoms per molecule. However, unrealistically large fullerenes would be needed to yield behavior reminiscent of recently investigated model colloids with strong short-ranged attraction (glass-glass transitions and logarithmic decay of time-correlation functions).  相似文献   

15.
Chemical functionalization of carbon nanotubes with Stone-Wales (SW) defects by carboxyl (COOH) groups is investigated by density functional calculations. Due to the localized donor states induced by the SW defect, the binding of the COOH group with the defective carbon nanotube is stronger than that with the perfect one. A quasi-tetrahedral bonding configuration of carbon atoms, indicating sp3 hybrid bonding, is formed in the adsorption site. The charge distribution analysis shows that, in comparison with benzoic acid, the localized or delocalized pi states on the nanotube would affect the polarities of chemical bonds of the COOH group without losing the acidity. Furthermore, it is found that the double-adsorption system (two COOH groups are respectively adsorbed on two individual carbon atoms of the SW defect) is more energetically favorable than the monoadsorption one. The adsorption of COOH groups leads to a significant change of the electronic states around the Fermi level, which is advantageous for the electrical conductivity. The functionalization by introducing functional groups on the topological defects provides a pathway for applications of carbon nanotubes in chemical sensors and nanobioelectronics.  相似文献   

16.
A C78 fullerene precursor: toward the direct synthesis of higher fullerenes   总被引:1,自引:0,他引:1  
A C78 fullerene related structure (of C78:1 and C78:4, the last undiscovered C78 IPR isomer) has been synthesized and investigated as a pyrolytic precursor. The pyrolysis of precursor containing all 78 carbon atoms in the required positions and 93 of the 117 C-C bonds, needed for fullerene formation, showed selectivity for C78 fullerene formation. In independent experiments it has been shown that the flash pyrolysis of C78 fullerene is not affected by Stone-Wales rearrangement and loss of C2 fragments and, thus, is very promising for the synthesis of individual isomers of higher fullerenes.  相似文献   

17.
Ni adsorption on Stone-Wales defect sites in (10,0) zigzag and (5,5) armchair single-wall carbon nanotubes was studied using the density functional theory. The stable adsorption sites and their binding energies on different Stone-Wales defect types were analyzed and compared to those on perfect side walls. It was determined that the sites formed via fusions of 7-7 and 6-7 rings are the most exothermic in the cases of (10,0) and (5,5) defective tubes. In addition C-C bonds associated with Stone-Wales defects are more reactive than the case for a perfect hexagon, thus enhancing the stability of the Ni adsorption. Moreover, the Ni adsorption was found to show a noticeable relationship to the orientation of the Stone-Wales defects with respect to the tube axis. The nature of the Ni adsorption on Stone-Wales defects that have the similar orientation is identical, in spite of the different chiralities.  相似文献   

18.
The relative stability of a family of carbon nanotubes (CNT) with defects has been investigated theoretically with first-principles density functional theory (DFT) calculations, B3LYP/6-31G*. A set of (12,0)?C(8,0) CNT heterojunctions with an increasing number (n?=?1?C4) of pentagon/heptagon defects were studied systematically in different arrangements, and the results were compared with a set of small defective graphene fragments. In addition, tubular structures with two pairs of defects distributed variedly (along and around the CNT) with increasing distances were considered. Within the defective structures, those containing the well-known Stone?CWales defect proved to be the most stable. However, when more than two pairs of defects coexisted, situations where the defects appeared together seemed to be preferred, in sharp contrast to the isolated pentagon rule (IPR) for fullerenes, although this agrees with some previous works on this topic. The junctions studied here constitute different arrangements that help us to identify which effects (geometry and energy) arise from the particular positions and orientations of the defects in nanotubes. Moreover, a close correlation was found between the energy stability and the geometric deformation, measured with the average pyramidalization angle (POAV) and the average trigonal deformation (D 120). For this purpose, the different contributions to molecular strain were analysed with the TubeAnalyzer software.  相似文献   

19.
Armchair graphene nanoribbons and their derived structures containing Stone-Wales defects are investigated using a self-consistent field crystal orbital method based on density functional theory. The investigation indicates that both the nanoribbons and the defective structures are semiconductors. A low concentration of middle Stone-Wales defects generally increases the carrier mobility, calculated using deformation potential theory, while edge Stone-Wales defects decrease it. The largest increment of the carrier mobility is as high as 170%, which is explained by the lighter carrier effective mass with crystal orbital analysis.  相似文献   

20.
Dihedral fullerenes are thermodynamically stable molecules with D nd or D nh symmetry.Based on experimental findings,two series of dihedral fullerenes with five-fold(C5) and six-fold(C6) symmetry have been studied using density functional theory(DFT).The DFT calculations showed that for both series the stabilities increased with increasing fullerene size.Structural analyses indicated that the stabilities are related to specific local geometries.In the case of the more abundant C5 series,the presence of approximately planar pentagons and hexagons on the top bowl favors their formation.That is to say,those fullerenes with small dihedral angles within the polygons are readily formed,because planar hexagons lead to strengthened conjugation which lowers average bonding energies(ABE) and increases thermodynamic stabilities.Non-planar hexagons at equatorial positions in tube-shaped fullerenes have an adverse effect on the conjugation and inhibit their formation.Calculations also demonstrated that fullerenes in the two series,including C 50(D 5h),C 60(D 6h),C 80(D 5d),C 96(D 6d),C 110(D 5h),and C 120(D 5d),have thermodynamically stable triplet structures with strong conjugation.The calculated IR and 13 C NMR spectra of the fullerenes show some similarities and regular trends due to their homogenous structures.The electronic structures indicate that short double bonds in hexagons with high electron occupancies are readily attacked by electrophilic agents and can also be coordinated by transition metals.Mechanistic discussions suggested that C 2 additions and C 2 losses constitute reversible processes at high temperature and C 2 additions in pentagonal fusions are crucial to the kinetics of the curvature of structures.C 3 additions lead to the formation of large fullerenes of other types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号