首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionAl2O3ceramic objects have a wide scope of appli-cations because of their high hardness, high intensity,low density, and superior chemical stability, whereasmetals are widely used for their excellent propertiessuch as good ductibility, electric…  相似文献   

2.
FeCo alloy nanoparticles encapsulated in the carbon matrix of metal–carbon nanocomposites have been manufactured under IR heating. The size of FeCo nanoparticles have been found to be tailored by varying synthesis temperature and metal concentration. The saturation magnetization has been shown to increase as the synthesis temperature or metal concentration rises, with an attendant decrease in coercive force. The electromagnetic properties of FeCo/C nanocomposites have been studied. Complex magnetic permittivity measurements have shown that variation of the synthesis temperature or metal concentration can appreciably increase magnetic loss, which leads to a shift of the band of minimum electromagnetic reflectivity in the frequency range 3–12 GHz.  相似文献   

3.
固体酸催化剂的无腐蚀、环境友好和可循环使用等特点使其成为无机液体酸的最佳替代物.磁性纳米固体酸具有优于常规固体酸催化剂的催化活性及分离简单的特性.用共沉淀法分别合成了一系列三组分TiO2-Al2O3-Fe3O4(TAF)和CeO2-Al2O3-Fe3O4(CAF)及四组分ZrO2--Al2O3-Fe3O4(ZACF)磁性纳米复合氧化物固体酸催化剂,通过电感耦合等离子体原子发射光谱、比表面积测定、X射线衍射、透射电镜、热重分析和红外光谱等对其进行了表征,并利用酯化反应作为探针反应评价了其催化性能.结果表明,合成的磁性纳米固体酸催化剂在酯化反应中表现出很好的催化活性.  相似文献   

4.
Metal–carbon nanocomposites that represent FeCo alloy nanoparticles uniformly distributed over the carbon matrix, were prepared by the IR pyrolysis of precursors comprising polyacrylonitrile (PAN), iron acetylacetonate, and cobalt acetate (the metal ratio in the precursors was Fe: Co = 1: 1, 3: 1). The composition of FeCo alloy nanoparticles satisfies the tailored ratio Fe: Co. The FeCo phase is formed at synthesis temperatures in the range 500–600°С; at T ≤ 500°С only FCC-Co-base solid solutions are observed. The nanocomposites prepared at T ≥ 600°С simultaneously contain FeCo intermetallic nanoparticles and an insignificant amount of a FCC-Co phase or a cobalt-base solid solution phase. The saturation magnetization of FeCo/C metal–carbon nanocomposites is determined by the mean nanoparticle size and the alloy composition, and ranges from 36 to 64 (A m2)/kg (when Fe: Co = 1: 1) and from 35 to 52 (A m2)/kg (when Fe: Co = 3: 1) at synthesis temperatures in the range 600–800°С.  相似文献   

5.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

6.
Samples of the Fe–Al–Co system are obtained electrochemically in a water solution. The kinetic dependences that describe the processes that occur in microparticles of aluminum in water solutions are established. The phase composition of the synthesized samples is determined via X-ray diffraction and Mössbauer spectroscopy. It is shown that the main contribution to the fine magnetic structure of Fe–Al–Co is made by the magnetically ordered structure with a hyperfine field around 348 kOe formed by a mechanical mixture of FeCo and Al.  相似文献   

7.
有序介孔C-Al2O3纳米复合材料的合成及其红外发射率   总被引:1,自引:0,他引:1  
以嵌段共聚物F127(PEO106PPO70PEO106, MW=12600)为模板剂, 异丙醇铝为铝源, 低分子量的酚醛树脂为碳源, 通过溶胶-凝胶三元共组装法合成了C-Al2O3纳米复合材料. 用X射线衍射(XRD)、透射电子显微镜(TEM)及N2吸脱附法对该复合材料进行结构与性能表征, 结果显示复合材料MC5A5具有较好的有序介孔结构, 其比表面积可达175 m2·g-1, 孔容0.22 cm3·g-1. 又以三元乙丙橡胶(EPDM)为粘结剂, 与介孔纳米复合材料混合制备涂层. 随着复合材料中Al2O3质量分数从30%增加到70%, 该涂层的红外发射率从0.575降至0.456, 表明Al2O3能有效降低复合材料的红外发射率, 预示该复合材料在军事装备隐身需求领域将具有较好的应用前景.  相似文献   

8.
A novel luminescent and magnetic Fe(3)O(4)/pyrene/polyacrylamide (Fe(3)O(4)/Py/PAM) nanocomposite has been prepared under ultrasonic radiation. This magnetic nanocomposite combined with pyrene would lead to a special functional magnetic luminescent composite that enjoys both the advantages of magnetic nanoparticles of Fe(3)O(4) and fluorescence nanoparticles of pyrene. Taking advantage of the magnetic property of Fe(3)O(4) nanocomposites, we can separate Fe(3)O(4)/Py/PAM nanocomposites from solution easily just by using a permanent magnet. Based on the fluorescence quenching of Fe(3)O(4)/Py/PAM nanocomposites by Cr(VI), a method for the selective determination of Cr(VI), without separation of Cr(III) in water, was developed. Under optimal experimental conditions, a limit of detection of 0.01 microg mL(-1) was achieved. The calibration curve was linear over the concentration range of 0.1-14.0 microg mL(-1) with a correlation coefficient of 0.9975. The proposed method has been applied to the selective quantification of Cr(VI) in synthetic samples and wastewater samples with the satisfactory results.  相似文献   

9.
采用静电纺丝技术制备了添加0~20wt%Al2O3的Ni0.5Zn0.5Fe2O4纳米纤维。通过XRD、FESEM、TEM和VSM对样品的物相结构、形貌和磁性能进行了表征。结果表明,所合成的复合纳米纤维的直径都分布在40~150 nm之间,添加到纤维中的Al2O3主要以非晶态形式分布于铁氧体晶粒边界;随着Al2O3添加量的增加,可观察到γ-Fe2O3相逐渐析出,Ni-Zn铁氧体的晶格常数单调减小,说明有一些Al2O3进入到尖晶石晶格中取代了B位的Fe3+离子,Ni-Zn铁氧体的平均晶粒尺寸先增大后减小,在Al2O3添加量为8wt%时达到最大值39.2 nm;比饱和磁化强度和矫顽力随Al2O3添加量的增加呈现出相同的变化规律,先减小后增大,当Al2O3添加量超过5wt%时又开始变小。  相似文献   

10.
MoO3在Al2O3薄膜表面扩散的研究   总被引:3,自引:0,他引:3  
氧化物和盐类在高比表面载体上的单层分散现象已被大量实验所证实[1].MoO_3在γ-Al_2O_3等高比表面载体上的分散已经研究很多,近来的研究证实MoO3等在α-Al2O3等小比表面载体上也能自发单层分散[2],但是分散的过程仍然缺乏直接的观察研究.本工作通过多种表面分析方法首次研究了MoO3在平整无定形的Al2O3薄膜上的扩散过程以及影响因素.发现除温度升高外、水汽的存在对该扩散过程也有促进作用.1实验部分1.1样品的制备采用SS-3200真空磁控溅射镀膜机,通入Ar-O2作为反应气,直流磁控…  相似文献   

11.
Research on Chemical Intermediates - CuAl2O4–Al2O3–SiO2 nanocomposites with different amounts of CuAl2O4 (40, 50, 60 and 70 wt. %) were synthesized by the sol–gel method and...  相似文献   

12.
FeCo-SiO2 aerogel nanocomposites with different porosity were obtained using two different sol-gel procedures: the first involves a single acidic step and gives rise to relatively dense aerogels while the second procedure allows one to obtain highly porous aerogels using urea in the second step to promote fast gelation. Samples with different loading of FeCo equimolar alloy and with different Fe : Co ratios were prepared. The magnetic properties of all the nanocomposite aerogels were extensively studied as a function of porosity and composition. Particular attention was paid to the role played by the interparticle interactions, which are mediated by the silica matrix, in determining the collective magnetic behaviour. The kind and strength of magnetic interactions are affected by both the composition and the porosity of the matrix.  相似文献   

13.
Journal of Sol-Gel Science and Technology - In this research, ZnAl2O4/Al2O3 nanocomposites with different ZnAl2O4 (30, 50, and 70?wt.%) were successfully prepared in one step by sol–gel...  相似文献   

14.
采用聚苯乙烯(PS)包裹Fe3O4磁性纳米粒子,制得Fe3O4@PS复合微球,以此作为磁性载体,通过微球表面的羧基将聚酰胺-胺类树形大分子(PAMAM)连接到磁性载体上,然后使Ag纳米粒子镶嵌在树形分子层中,制得可再生的金属复合催化粒子Fe3O4@PS@PAMAM-Ag.并采用红外光谱、扫描电镜、电感耦合等离子体质谱(ICP-MS)和X射线光电子能谱等方法对复合催化粒子进行了表征,结果表明,树形分子可以较好地分散和稳定金属Ag纳米粒子,所制复合催化粒子表面Ag含量为1.64%,具有较高的催化还原对硝基苯酚的活性.同时,利用外加磁场可以方便快捷地从反应体系中分离出来,继续用于下一次反应中,复合催化粒子循环使用6次后,仍保持完全的催化性能.  相似文献   

15.
The Fe(3)O(4)/(sodium oleic acid/ethyltrimethyl ammonium bromide)(n)/4-aminobenzoic acid (Fe(3)O(4)/(NaOL/CTAB)(n)/PABA) nanocomposites have been prepared by a layer-by-layer self-assembly approach. This kind of nanocomposites have fluorescent, magnetic and water-soluble properties. Taking advantage of the magnetic property of nanocomposites, we can separated them from solution easily by using a permanent magnet. By using their strong fluorescence, we can detect proteins. At pH 6.98, the fluorescence of Fe(3)O(4)/(NaOL/CTAB)(n)/PABA nanocomposites can be enhanced by the proteins. Under optimal conditions, the linear ranges of calibration curves were 0.2-20, 0.2-13, 0.2-10 microg mL(-1) for gamma-globulin (gamma-IgG), human serum albumin (HSA), and bovine serum albumin (BSA), respectively. The detection limits were 0.02, 0.01, 0.02 for gamma-IgG, HSA and BSA, respectively. The method has been applied to analyze the total proteins in human samples and the results were in good agreement with those reported by the hospital. This method is sensitive, simple and potential in many areas.  相似文献   

16.
许多化学工作者对单齿膦配体(PPh3,PBun3,PEt2Ph,P(OEt)3,P(OC6H5)3)与母体簇合物FeCo2(CO)9(μ3-S)的取代反应进行过详细研究[1-3],但对双齿膦配体与母体簇合物的取代反应研究报导较少.Aime[4]合成了含双齿膦配体的簇合物FeCo2(CO)7(μ3-S)(Ph2PCH2PPh2),并用13CNMR和IR光谱方法对其结构进行了表征.到目前为止,含双齿膦配体的该类簇合物的晶体与分子结构还未见报导.RosannaRossetti[2]通过研究母体簇合物与…  相似文献   

17.
以镁铁尖晶石(MgFe2O4)颗粒为磁性基质, 采用共沉淀法制备了替加氟(TF)插层层状双金属氢氧化物(LDHs)包覆MgFe2O4的核-壳结构磁性纳米复合体[MgFe2O4@(TF-LDHs)], 并对其化学组成、 晶体结构和磁性等进行了表征, 探讨了TF在LDHs层间的存在状态, 考察了TF的释放行为. 实验结果表明, MgFe2O4@(TF-LDHs)纳米复合体具有顺磁性, 其比饱和磁化强度随磁性基质含量的增大而增强; TF分子在LDHs层间以长轴略倾斜于LDHs层板的方式呈双层排布; MgFe2O4@(TF-LDHs)纳米复合体具有明显的药物缓释效果, 其释放动力学过程符合准二级动力学方程, 释放机理为Fick扩散; 增大磁性基质含量或施加外加磁场均可减缓其药物释放过程.  相似文献   

18.
In this study,the preparation of a new kind of magnetic and luminescent Fe3O4/CdTe nanocomposites was demonstrated. Superparamagnetic Fe3O4 nanoparticles were first synthesized by hydrothermal coprecipitation of ferric and ferrous ions,followed by the modification of their surfaces with tetramethylammonium hydroxide(TMAOH) and the chemical activation with aspartic acid.The surface-modified Fe3O4 nanoparticles were then covalently coated with CdTe quantum dots(QDs),which were modified with mercaptoacetic acid(MPA),to form the Fe3O4/CdTe magnetic and luminescent nanocomposites through the coordination of the amino groups on the surfaces of Fe3O4 and the carboxyl groups on CdTe QDs.The structure and properties of as-synthesized nanocomposites were characterized.It was indicated that the nanocomposites possessed structure with an average diameter of 40- 50 nm,yellow-green emission feature and room temperature ferro-magnetism.Both the fluorescence and UV-vis absorption spectra of the nanocomposites showed a blue shift comparing with those of CdTe QDs.The mechanism of the blue shift was presented.The nanocomposites retained the ferromagnetic property with a saturation magnetization of 8.9 emu/g.  相似文献   

19.
The elucidation of a molecular structure of the active sites (i.e., the Co-Mo-S phase) of Co-Mo hydrodesulfurization catalysts has received extensive attention. In the present study, we unambiguously determined, for the first time, the NO adsorption behavior and magnetic property of the Co-Mo-S phase by preparing unique Co-Mo/Al(2)O(3) catalysts (CVD-Co/MoS(2)/Al(2)O(3)), in which all the Co atoms are present as the Co-Mo-S phase. The catalysts were characterized by NO adsorption (pulse technique and FTIR), Co K-edge XANES, and the magnetic susceptibility and effective magnetic moment of Co. Nitric oxide molecules were adsorbed on 33% of the Co atoms in CVD-Co/MoS(2)/Al(2)O(3) after sulfidation and on only half of the Co atoms even after an H(2)-treatment of the sulfided catalyst at 573-673 K. The Co atoms in CVD-Co/MoS(2)/Al(2)O(3) exclusively exhibited an antiferromagnetic property, indicating that even-numbered Co atoms are interacting with each other in the Co-Mo-S phase. A Co-Mo/Al(2)O(3) catalyst, prepared by a conventional impregnation technique, was composed of the antiferromagnetic Co sulfide species as observed in CVD-Co/MoS(2)/Al(2)O(3) in addition to Co(9)S(8). On the basis of the NO adsorption behavior and magnetic property, it is empirically proposed that the structure of the Co-Mo-S phase is represented as a Co sulfide dinuclear cluster located on the edge of MoS(2) particles. The magnetic property of Co/Al(2)O(3) sulfide catalysts depended on the preparation method.  相似文献   

20.
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号