首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new way to prepare hydrophobic membranes is reported. Polydimethylsiloxane oil (and any other silicone oil molecules) was grafted onto a porous alumina membrane (or any hydroxylated ceramic or glass) by heating, to 180°C, producing a covalently grafted monolayer of silicone oil, chemically and thermally stable, unaffected by organic solvents but susceptible to alkali attack (as is the silicone oil itself). The membrane is totally impermeable to pure water, and organic solvents may be extracted from water mixtures by pervaporation. Very high permeation fluxes were obtained, suggesting possible use of these silicone/ceramic membranes in extraction of volatile organic compounds (VOCs). This simple modification can be applied to macroporous membranes increasing hydrophobicity without pore blocking.  相似文献   

2.
Gas permeation tests using nitrogen, oxygen, hydrogen, helium and carbon dioxide were performed to assess how membrane modification procedures affect the separating layer morphology of thin-film composite reverse osmosis membranes. Gas selectivity data provided evidence for the presence of nanoscale separating layer defects in dry samples of six commercial membrane types. These defects were eliminated when the membrane surface was coated with a polyether–polyamide block copolymer (PEBAX 1657), as indicated by a 25-fold decrease in gas permeance and at least a 2-fold increase in most selectivity values. Treatment with n-butanol followed by drying reduced water flux and gas flux by 30% and 75%, respectively, suggesting that using n-butanol as a solvent for applying coatings negatively affects membrane performance. The results of this study demonstrate that gas permeation measurements can be used to detect morphological features that impact gas and water membrane flux.  相似文献   

3.
Polycrystalline randomly oriented defect free zeolite layers on porous α-Al2O3 supports are prepared with a thickness of less than 5 μm by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite poze, the flux of the weakly adsorbing molecule is suppressed by the sorption and the mobility of the strongly adsorbing molecule resulting in pore-blocking effects. The separation of these mixtures is mainly based on the sorption and completely different from the permselectivity. At low loadings of the strongly adsorbing molecules the separation is based on the sorption and the diffusion and is the same as the permselectivity. Separation factors for the isomers of butane (n-butane/isobutane) and hexane (hexane/2,2-dimethylbutane) are respectively high (10) and very high (> 2000) at 200°C. These high separation factors are a strong evidence that the membrane shows selectivity by size-exclusion and that transport in pores larger than the zeolite MFI pores (possible defects, etc) can be neglected.  相似文献   

4.
The potential of hybrid organic–inorganic membranes for separating organic molecules from air, based on solubility selective mechanism, was evaluated. Alumina and titana membranes with average pore size near 4 nm were surface modified using trimethoxysilane fluorinated coupling reagent. The permeabilities to helium, nitrogen, methane, ethane, propane, butane and carbon dioxide were evaluated at feed pressures lying between (1.5 × 105 and 3.5 × 105 Pa) 1.5 and 3.5 bar and permeate outlet near 1 × 105 Pa (1 bar). The permeabilities of the grafted membranes generally decreased by about two to three orders of magnitude compared with the untreated membranes. The CO2/N2 permselectivity increased significantly in the case of the TiO2 grafted membrane. The membranes performances were compared and the TiO2 grafted membrane exhibits higher permselectivity and permeability, so that, it is a good candidate for CO2 to N2 separation and CO2 to hydrocarbon separation.  相似文献   

5.
Dialkyl imidazolium salt with better thermal stability than the commonly used dimethyldioctadecyl ammonium salt was synthesized and ion exchanged on the montmorillonite surface. Polypropylene nanocomposites with different volume fractions of the obtained organo-montmorillonite (OMMT) were prepared and the effect of the modified clay on the gas barrier and mechanical properties was studied. Wide angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM) were used to investigate the microstructure obtained. Thermal behavior of the composites analyzed by thermogravimetric analysis was observed to enhance significantly with the filler volume fraction. The gas permeation through the nanocomposite films markedly decreased with augmenting the filler volume fraction. The decrease in the gas permeation was even more significant than through the composites with ammonium treated montmorillonite. Better thermal behavior of the organic modification owing to the delayed onset of degradation hindered the interface degradation along with detrimental side reactions with polymer itself. Transmission electron microscopic studies indicated the presence of mixed morphology i.e., single layers and the tactoids of varying thicknesses in the composites. The crystallization behavior of polypropylene remained unaffected with OMMT addition. A linear increase in the tensile modulus was observed with filler volume fraction owing to partial exfoliation of the clay.  相似文献   

6.
Polypropylene membranes modified with natural and organically modified montmorillonite clays were prepared. The permeability, diffusivity and solubility of helium, oxygen and nitrogen were determined for the unfilled and filled membranes over the temperature range 25-65 °C. Physical properties of polypropylene membranes were investigated using X-ray diffraction, thermogravimetric analyser, tensile testing and differential scanning calorimetry. The results showed that the filled membranes exhibit lower gas permeability compared to the unfilled polypropylene membrane. For helium, a reduced diffusivity is mainly responsible for the reduction in the permeability, in contrast, for nitrogen and oxygen, both diffusivity and solubility were reduced by the presence of fillers. The X-ray diffraction spectra showed that the incorporation of the unmodified and modified clay did not affect the crystallographic nature of polypropylene.  相似文献   

7.
Asymmetric carbon hollow fiber membranes were prepared by pyrolysis of an asymmetric polyimide hollow fiber membrane, and their mechanical and permeation properties were investigated. The carbon membrane had higher elastic modulus and lower breaking elongation than the polyimide membrane. Permeation experiments were performed for single gases such as H2, CO2, and CH4, and for mixed gases such as H2/CH4 at high feed pressure ranging from 1 to 5 MPa with or without toluene vapor. The permeation properties of the carbon membranes and the polyimide membrane were compared. There was little change in the properties of the carbon membranes with a passage of time. The properties were hardly affected by the feed pressure, whether the feed was accompanied with the toluene vapor or not, because the carbon membranes were not affected by compaction and plasticization.  相似文献   

8.
Porous alumina as single tubes and as a multihole structure with controlled properties has been prepared. It is shown that the porous structure of these supports can be controlled without burning out additives but by a variation of the ratio between the main alumina component (α-Al2O3) and aluminium hydroxide (binder) in the extrusion masses and thermal treatment conditions. Gas permeability measurements have been used for the characterization of the supports. The properties of the ceramics are shown to satisfy the requirements of membrane supports.  相似文献   

9.
This paper describes approaches developed for the preparation and also the characterization of innovative inorganic or hybrid membrane materials. Soft chemistry routes, sol–gel methods and plasma-enhanced chemical vapour deposition (PECVD) are used to get tailor-made layers with different architectures. The infiltrated composite membranes are first examined. They exhibit a good thermo-mechanical resistance, a low sensitivity to the presence of defects, a relatively high flow resistance and are attractive for catalytic contactor applications. Preliminary results on supported ceramic membranes with a hierarchical porosity are then presented. Finally, examples are given to illustrate the interest of the PECVD route and of plasma post-treatments for preparing very thin hybrid separative layers.  相似文献   

10.
A series of polyurethane films based on hard segments consisting of toluene diisocyanate and 1,4-butanediol and different soft segments consisting of hydroxyl terminated polybutadiene, hydroxyl terminated polybutadiene/styrene and hydroxyl terminated polybutadiene/acrylonitrile were synthesized by solution polymerization separately. Positron annihilation lifetimes were measured at room temperature for all samples studied. We found that both the free volume size and fractional free-volume decreased with the increase of hard segment content. On the other hand, direct relationship between the gas permeability and the free-volume has been established based on the free-volume parameters and gas diffusivity measured. Experimental results revealed that the free-volume plays an important role in determining the gas permeability.  相似文献   

11.
以二甲基二乙氧基硅烷为硅源,在水溶液中成功制备了SiO2修饰纳米ZrO2颗粒;利用透射电子显微镜、热重分析仪、X射线衍射仪、红外光谱仪分析了样品的形貌和结构;将SiO2/ZrO2与α-Al2O3制成陶瓷材料,考察了其机械性能.结果表明,所制备的SiO2/ZrO2晶粒均一,直径约为10nm,硅原子在SiO2/ZrO2中以Si―O―Zr键合形式存在,SiO2不影响ZrO2的晶型.引入SiO2使得ZrO2晶粒细化、尺寸均匀性提高;SiO2/ZrO2/Al2O3陶瓷气孔率小,具有致密的显微结构和优异的机械性能.  相似文献   

12.
The effect of various amounts of lanthanides on the dispersion of Pt on Al2O3 — Ln2O3 (where Ln = La, Ce) has been studied by hydrogen chemisorption in a pulse chromatographic system.This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

13.
A silica membrane was produced by chemical vapor deposition using tetraethoxysilane (TEOS), phenyltriethoxysilane (PTES) or diphenyldiethoxysilane (DPDES) as the Si source. Amorphous silica was deposited in the mesopores of a γ-alumina film coated on a porous -alumina tube, by evacuating the reactant through the porous wall. Hydrogen permeance at a permeation temperature of 600°C was of the order of 10−7 mol m−2 s−1 Pa−1, and was not greatly dependent on the Si sources. The silica membrane produced using TEOS contained micropores permeable to both helium and hydrogen, but CO2 and larger molecules were only slightly permeated through those mesopores which were left unplugged. The silica membrane produced from DPDES showed a single-component CO2 permeance equivalent to that of single-component He, and CO2/N2 selectivity was approximately 9 at a permeation temperature of 30°C. When a mixture of CO2 and N2 was fed, however, CO2 permeance decreased to the level of N2 permeance. The H2/N2 selectivity, determined from single-component permeances to H2 and N2, was approximately 100, and these permeances remained unchanged when an equimolar mixture of H2 and N2 was fed. Thus, the DPDES-derived membrane possessed two types of micropores, abundant pores through which helium and hydrogen permeated and a small number of pores in which molecules of CO2 and N2 were permeable but not able to pass one another. Neither meso or macropores remained in the DPDES membrane.  相似文献   

14.
A detailed study of gas permeation, thermodynamic properties and free volume was performed for a novel polymer of intrinsic microporosity (PIM-1). Gas permeability was measured using both gas chromatographic and barometric methods. Sorption of vapors was studied by means of inverse gas chromatography (IGC). In addition, positron annihilation lifetime spectroscopy (PALS) was employed for investigation of free volume in this polymer. An unusual property of PIM-1 is a very strong sensitivity of gas permeability and free volume to the film casting protocol. Contact with water in the process of film preparation resulted in relatively low gas permeability (P(O2) = 120 Barrer), while soaking with methanol led to a strong increase in gas permeability (P(O2) = 1600 Barrer) with virtually no evidence of fast aging (decrease in permeability) that is typical for highly permeable polymers. For various gas pairs (O2/N2, CO2/CH4, CO2/N2) the data points on the Robeson diagrams are located above the upper bound lines. Hence, a very attractive combination of permeability and selectivity is observed. IGC indicated that this polymer is distinguished by the largest solubility coefficients among all the polymers so far studied. Free volume of PIM-1 includes relatively large microcavities (R = 5 Å), and the results of the PALS and IGC methods are in reasonable agreement.  相似文献   

15.
NaA zeolite microfiltration (MF) membranes were prepared on α-Al2O3 tube by in situ hydrothermal synthesis method and investigated for water separation and recovery from oily water. NaA/α-Al2O3 MF membranes with average inter-particle pore sizes of 1.2 μm, 0.4 μm and 0.2 μm were prepared. The membranes were characterized by scanning electron microscope (SEM) and the inter-particle pore size distribution (PSD) was determined by gas bubble pressure method. Membranes with pore sizes of 1.2 μm (NaA1) and 0.4 μm (NaA2) were used to treat an oil-in-water emulsion containing 100 mg/L oil. Better than 99% oil rejection was obtained and water containing less than 1 mg/L oil was produced at 85 L m−2 h−1 by NaA1 at a membrane pressure of 50 kPa. Consistent membrane performance was maintained by a regeneration regime consisting of frequent backwash with hot water and alkali solution.  相似文献   

16.
Influence of the structure of styrene and polystyrene modified PE membranes on their permeation properties is presented. It is demonstrated that the temperature of styrene treatment (N membranes) and the presence of polystyrene (P membranes) results in high differentiation of the permeation properties. SALS studies have shown the structural reorganization depending on modification extent and diffusion of the penetrant. It is also shown that the morphology of the dried films remains unchanged. This work proves that the appropriate modification of PE films results in membranes with controlled permeation behavior.  相似文献   

17.
In this, the third part of our article series, the symposia organized by the Unterkommission für Gas-Chromatographie in 1965 and 1968 are discussed.  相似文献   

18.
Grafting of ethylene glycol methacrylate phosphate (EGMP) monomer polymerized from alumina nanoparticles has been performed in order to confer a better thermal stability and fire retardancy to PMMA and PS nanocomposites. Grafting and polymerization processes have been investigated using FTIR, TGA, and elemental analyses. Thermal stability and decomposition routes of monomer and polymer grafted alumina have been studied using thermogravimetric analysis and compared with the thermal behavior of the same alumina modified with octylsilane. The thermal stability of EGMP supported by the nanoparticles is higher than that of free EGMP. The incorporation of 5 wt% of both surface treated alumina in PMMA and PS leads to an improvement of thermal stability in comparison with unfilled polymers as well as nanocomposites containing unmodified alumina. Furthermore, the grafting of organic compounds on alumina also allows the peak of heat release rate measured using a cone calorimeter to be significantly reduced for PMMA nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Hydrazinium acetate, metavanadate, sulfite, sulphamate and thiocyanate have been prepared by the reaction of corresponding ammonium salts with hydrazine hydrate. The compounds were characterised by chemical analysis and infrared spectra. Thermal behaviour of these hydrazinium derivatives have been investigated using thermogravimetry and differential thermal analysis.  相似文献   

20.
MFI-type zeolite particles of 0.1–1 μm in diameter were prepared by adjusting tetra-n-propylammonium hydroxide (TPAOH) and water contents in synthesis mixtures. Using those particles as seeds, MFI-type zeolite membranes were prepared on the surface of a porous mullite tube by secondary growth. The membranes were formed as polycrystalline zeolite layers on and inside the porous support, and the membranes were composed of the [h 0 h]-oriented crystallites. The membrane consisting of a-oriented crystallites could be also prepared. However, the a-oriented zeolite layers were not active on the permeation properties of butanes. Rather the size and loaded amount of the seed particles influenced on the permeation properties through the membranes. As a result, the n-C4H10/i-C4H10 permselectivity could be increased to 220 by adjusting the size and the loaded amount of particles. These results suggest that the number of loaded particles affects on the permeation properties through the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号