首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A lamp‐based fluorescence detection (Flu) system for CE was extended with a wavelength‐resolved (WR) detector to allow recording of full protein emission spectra. WRFlu was achieved using a fluorescence cell that employs optical fibres to lead excitation light from a Xe‐Hg lamp to the capillary window and protein fluorescence emission to a spectrograph equipped with a CCD. A 280 nm band pass filter etc. together with a 300 nm short pass cut‐off filter was used for excitation. A capillary cartridge was modified to hold the detection cell in a commercial CE instrument enabling WRFlu in routine CE. The performance of the WRFlu detection was evaluated and optimised using lysozyme as model protein. Based on reference spectral data, a signal‐intensity adjustment was introduced to correct for transmission losses in the detector optics that occurred for lower protein emission wavelengths. CE‐WRFlu of lysozyme was performed using BGEs of 50 mM sodium phosphate (pH 6.5 or 3.0) and a charged‐polymer coated capillary. Using the 3‐D data set, signal averaging over time and emission‐wavelength intervals was carried out to improve the S/N of emission spectra and electropherograms. The detection limit for lysozyme was 21 nM, providing sufficient sensitivity to obtain spectral information on protein impurities.  相似文献   

2.
Yang X  Yuan H  Wang C  Zhao S  Xiao D  Choi MM 《Electrophoresis》2007,28(17):3105-3114
A highly sensitive in-column fiber-optic LIF detector for CE has been constructed and evaluated. In this detection system, a 457-nm diode-pumped solid-state blue laser was used as the excitation light source and an optical fiber (40 mum od) was used to transmit the excitation light. One end of the optical fiber was inserted into the separation capillary and was in situ positioned at the detection window. The other end of the fiber was protruded from the capillary to capture the excitation light beam from the blue laser. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a yellow color filter before reaching the photomultiplier tube. The present CE-fluorescence detection is a simple and compact optical system. It reduces the laser scattering effect from the capillary and fiber as compared to the conventional LIF detection for CE. Its utility was successfully demonstrated by the separation and determination of D-penicillamine labeled with naphthalene-2,3-dicarboxaldehyde. The detection limit was 0.8 nM (S/N = 3). The present detection scheme has been proven to be attractive for sensitive fluorescence detection for CE.  相似文献   

3.
An LIF detector was integrated into a CE system based on silver mirror coating detection window and small‐angle optical deflection from collinear configuration. For this detection scheme, the incident light beam was focused on capillary through the edge of a lens, resulting in a small deflection angle that deviated 18° from the collinear configuration. Meanwhile, the excitation light and emitted fluorescence were effectively reflected by silver mirror coating at the detection window. The fluorescence was collected through the center of the same lens and delivered to a PMT in the vertical direction. In contrast to conventional collinear LIF detection systems, the fluorescence intensity was greatly enhanced and the background level was significantly eliminated. FITC and FITC‐labeled amino acids were used as model analytes to evaluate the performance with respect to design factors of this system. The limit LOD was estimated to be 0.5 pM for FITC (S/N = 3), which is comparable to that of optimized confocal LIF systems. All the results indicate that the proposed detection scheme will be promising for development of sensitive and low‐cost CE system.  相似文献   

4.
Wang SL  Fan XF  Xu ZR  Fang ZL 《Electrophoresis》2005,26(19):3602-3608
A miniaturized CE system has been developed for fast DNA separations with sensitive fluorimetric detection using a rectangle type light-emitting diode (LED). High sensitivity was achieved by combining liquid-core waveguide (LCW) and lock-in amplification techniques. A Teflon AF-coated silica capillary on a compact 6x3 cm baseplate served as both the separation channel for CE separation and as an LCW for light transmission of fluorescence emission to the detector. An electronically modulated LED illuminated transversely through a 0.2 mm aperture, the detection point on the LCW capillary without focusing, and fluorescence light was transmitted to the capillary outlet. To simplify the optics and enhance collection of light from the capillary outlet, an outlet reservoir was designed, with a light transmission window, positioned directly in front of a photomultiplier tube (PMT), separated only by a high pass filter. Automated sample introduction was achieved using a sequential injection system through a split-flow interface that allowed effective release of gas bubbles. In the separation of a phiX174 HaeIII DNA digest sample, using ethidium bromide as labeling dye, all 11 fragments of the sample were effectively resolved in 400 s, with an S/N ratio comparable to that of a CE system with more sophisticated LIF.  相似文献   

5.
A novel fluorescence detection system for CE was described and evaluated. Two miniature laser pointers were used as the excitation source. A Y‐style optical fiber was used to transmit the excitation light and a four‐branch optical fiber was used to collect the fluorescence. The optical fiber and optical filter were imported into a photomultiplier tube without any extra fixing device. A simplified PDMS detection cell was designed with guide channels through which the optical fibers were easily aligned to the detection window of separation capillary. According to different requirements, laser pointers and different filters were selected by simple switching and replacement. The fluorescence from four different directions was collected at the same detecting point. Thus, the sensitivity was enhanced without peak broadening. The fluorescence detection system was simple, compact, low‐cost, and highly sensitive, with its functionality demonstrated by the separation and determination of red dyes and fluorescent whitening agents. The detection limit of rhodamine 6G was 7.7 nM (S/N = 3). The system was further applied to determine illegal food dyes. The CE system is potentially eligible for food safety analysis.  相似文献   

6.
Feng-Bo Yang 《Talanta》2009,78(3):1155-203
In this work, a simple and low-cost miniaturized light-emitting diode induced fluorescence (LED-IF) detector based on an orthogonal optical arrangement for capillary electrophoresis (CE) was developed, using a blue concave light-emitting diode (LED) as excitation source and a photodiode as photodetector. A lens obtained from a waste DVD-ROM was used to focus the LED light beam into an ∼80 μm spot. Fluorescence was collected with an ocular obtained from a pen microscope at 45° angle, and passed through a band-pass filter to a photodiode detector. The performance of the LED-IF detector was demonstrated in CE separations using sodium fluorescein and fluorescein isothiocyanate (FITC)-labeled amino acids as model samples. The limit of detection for sodium fluorescein was 0.92 μM with a signal-to-noise ratio (S/N) of 3. The total cost of the LED-IF detector was less than $ 50.  相似文献   

7.
Zhao S  Yuan H  Xiao D 《Electrophoresis》2006,27(2):461-467
A highly sensitive optical fiber light-emitting diode (LED)-induced fluorescence detector for CE has been constructed and evaluated. In this detector, a violet or blue LED was used as the excitation source and an optical fiber with 40 microm OD was used to transmit the excitation light. The upper end of the fiber was inserted into the separation capillary and was situated right at the detection window. Fluorescence emission was collected by a 40 x microscope objective, focused on a spatial filter, and passed through a cutoff filter before reaching the photomultiplier tube. Output signals were recorded and processed with a computer using in-house written software. The present CE/fluorescence detector deploys a simple and inexpensive optical system that requires only an LED as the light source. Its utility was successfully demonstrated by the separation and determination of amino acids (AAs) labeled with naphthalene-2,3-dicarboxaldehyde (NDA) and FITC. Low detection limits were obtained ranging from 17 to 23 nM for NDA-tagged AAs and 8 to 12 nM for FITC-labeled AAs (S/N=3). By virtue of such valuable features as low cost, convenience, and miniaturization, the presented detection scheme was proven to be attractive for sensitive fluorescence detection in CE.  相似文献   

8.
A miniaturized post-column fluorimetric detection cell for capillary separation methods based on optical fibers and liquid core waveguides (LCWs) is described. The main part of the detection cell is a fused-silica capillary coated with Teflon AF serving as an LCW. The optical fibers are used both for coupling the excitation source with the detection domain in the LCW and for the axial fluorescence collection from the LCW end. The latter fiber is connected with a compact CCD spectrometer that serves for the rejection of the scattered excitation light and for the fluorescence signal detection. The proposed design offers a compact fluorescence detector for various microcolumn separation techniques without optical elements such as filters or objectives. Moreover, its construction and optical adjustment are very simple and the whole system is highly miniaturized. The function of the detection cell is demonstrated by CE of amino acids labelled by fluorescein-based tags. Separations of different standard amino acid mixtures and plasma samples are presented. The comparison of plasma amino acid levels of individuals being in good health with those of patients with inherited metabolic disorders is also shown.  相似文献   

9.
Bubble cells have been frequently employed in capillary electrophoresis (CE) to increase the light path length with UV detection to provide an increase in the observed sensitivity of CE; however this approach has not been commonly used for laser-induced fluorescence detection (LIF) with CE. In this paper we study the influence of laser power on the sensitivity of detection in using conventional and enlarged fused silica capillaries for CE with LIF. When using the bubble cell capillary, the laser power must be decreased relative to use of the conventional capillary to reduce the effects of photodegradation of the species being illuminated by the laser. Even though the light intensity was decreased, an increase in sensitivity of detection was observed for most compounds when a bubble cell was used. This increase ranged from a factor of 8 for riboflavin (410 nm excitation) to 3.2 for most aromatic compounds (266 nm excitation), when using a 3x bubble cell compared with a conventional capillary. The bubble cell capillary was used for native detection of IgG by LIF at 266 nm. A limit of detection of 60 ng mL(-1) was obtained from a 20 pg injection, which was 40 times more sensitive than silver staining in conventional SDS/PAGE.  相似文献   

10.
Sluszny C  He Y  Yeung ES 《Electrophoresis》2005,26(21):4197-4203
A continuous-wave 280 nm light-emitting diode (LED) was used as the excitation source for native fluorescence detection of proteins in CE. The operating current and temperature of the LED were optimized in order to achieve high luminescence power. It was found that a forward current of 30 mA and a temperature of approximately 5 degrees C gave the best S/N. By using a set of two ball lenses to focus light from the LED, we achieved a spot of approximately 200 mum with a power of 0.1-0.2 mW on the detection window. Fluorescence was collected with a ball lens at 90 degrees angle through a bandpass filter onto a photomultiplier tube. In CZE an LOD of 20 nM for conalbumin was reached. In capillary gel electrophoresis all eight proteins from a commercial standard kit were detected with high S/N. For a 10 microg/mL total protein mixture, S/N was better than 3 for all proteins in solution. Further improvement in LOD should be possible on utilization of an LED with higher luminescence power.  相似文献   

11.
One of the reasons for the immense interest in capillary electrochromatography (CEC) is its feature to combine chromatographic selectivity with the high efficiency and the miniaturization potential of capillary electrophoresis (CE). The capability of commercial CE instruments to run CEC has enforced the readiness of users and researchers to work on this separation technique. Nevertheless, to fully exploit the potential of CEC, a routine CE device can certainly not fulfill all requirements. Two different approaches have been made to overcome this problem. The first was to modify commercial CE instruments for various demands. Pressurization of the packed capillary to prevent "air" bubble formation, gradient elution capabilities and thermostating devices allowing a greater flexibility in column designs have been implemented in CE instruments of several manufacturers. A completely different approach is the development of modular laboratory-made instrumentation dedicated to special CEC requirements. In order to increase mobile phase velocity and thus the speed of analysis the availability of voltages higher than 30 kV was accomplished in some of these devices. Gradient elution was achieved by either coupling of gradient LC systems or an electroosmotic generation of the changing eluent composition. When a pressure gradient is applied between both column ends in addition to the voltage gradient, a hybrid between capillary HPLC and CEC results. This chromatographic mode is named pressure-assisted electrochromatography (PEC). Either CE instruments equipped with additional HPLC pumps or modular laboratory-made devices are suitable for PEC. In CEC, sensitivity for UV detection is rather poor due to the short optical path length for on-column detection in capillary separation techniques. A special cell design with enhanced light path is presented and further principles like, e.g., fluorescence detection and coupling to mass spectrometry are discussed.  相似文献   

12.
A new detector, capillary coupled with optical fiber LED‐induced fluorescence detector (CCOF‐LED‐IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF‐CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in‐capillary common optical fiber LED‐induced fluorescence detector (IC‐COF‐LED‐IFD, using COF for short). The LODs of CCOF‐CE and COF‐CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0–102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample.  相似文献   

13.
《Electrophoresis》2017,38(3-4):452-459
A new detector, silvering detection window and in‐capillary optical fiber light‐emitting diode‐induced fluorescence detector (SDW‐ICOF‐LED‐IFD), is introduced for capillary electrophoresis (CE). The strategy of the work was that half surface of the detection window was coated with silver mirror, which could reflect the undetected fluorescence to the photomultiplier tube to be detected, consequently enhancing the detection sensitivity. Sulfonamides (SAs) are important antibiotics that achieved great applications in many fields. However, they pose a serious threat on the environment and human health when they enter into the environment. The SDW‐ICOF‐LED‐IFD‐CE system was used to determine fluorescein isothiocyanate (FITC)‐labeled sulfadoxine (SDM), sulfaguanidine (SGD) and sulfamonomethoxine sodium (SMM‐Na) in environmental water. The detection results obtained by the SDW‐ICOF‐LED‐IFD‐CE system were compared to those acquired by the CE with in‐capillary optical fiber light‐emitting diode‐induced fluorescence detection (ICOF‐LED‐IFD‐CE). The limits of detection (LODs) of SDW‐ICOF‐LED‐IFD‐CE and ICOF‐LED‐IFD‐CE were 1.0–2.0 nM and 2.5–7.7 nM (S/N = 3), respectively. The intraday (n = 6) and interday (n = 6) precision of migration time and corresponding peak area for both types of CE were all less than 0.86% and 3.68%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 92.5–102.9%. The results indicated that the sensitivity of the SDW‐ICOF‐LED‐IFD‐CE system was improved, and that its reproducibility and accuracy were satisfactory. It was successfully applied to analyze SAs in environmental water.  相似文献   

14.
A simple and rugged sheathless interface for capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) was designed using common laboratory tools and chemicals. The interface uses a small platinum (Pt) wire that is inserted into the CE capillary through a small hole near the terminus. The position of the wire inside the CE capillary and within the buffer solution is analogous to standard CE separation operations where the terminus of the CE capillary is placed inside a buffer reservoir along with a grounded platinum electrode. By combining the use of the in-capillary electrode interface with sharpening of the fused silica tip of the CE capillary outlet, a stable electrospray current was maintained for an extended period of time. The design was successfully applied to CE/ESI-MS separations and analysis of mixtures of peptides and proteins. A detection limit of approximately 4 femtomole (S/N = 3) was achieved for detection of myoglobin utilizing a 75-µm-i.d. aminopropylsilane treated CE column and using a wide scan range of 550–1300 Da. The advantages of this new design include (1) a stable CE and ESI current, (2) durability, (3) a reduced risk of sparking between the capillary tip and the inlet of the mass spectrometer, (4) lack of any dead volume, and (5) facile fabrication with common tools and chemicals.  相似文献   

15.
An LIF detector was integrated into a CE system which uses a ball lens to focus the laser beam on the CE capillary. The detector employs an ellipsoid that is glued on the capillary window, to permit the collection of the fluorescence in the capillary. This 'trapped' fluorescence stays in the capillary because the angle of the silica/air interface is greater than the critical angle. The performance of this new detector setup is found to be identical to the collinear setup using the same ball lens. An application to the analysis of FITC-labeled IgG was optimized using a 14 cm effective length capillary. The LOD of an FITC-labeled IgG2 at an excitation wavelength of 488 nm was 150 pg/mL, which was 10 times better than the LOD recorded with slab gel silver staining. Using a tetramethylrhodamine (TAMRA)-labeled IgG2 and a 532 nm excitation wavelength the LOD is 50 pg/mL. The electropherograms of four different commercial FITC conjugates of IgG were studied. The presence of aggregates was observed in two samples while close kinetics of reduction was observed between free aggregates and high aggregates concentration samples. The integrated LIF detector provides an extremely powerful and convenient tool for antibody analysis and should be useful for therapeutic MAb control in pharmaceutical facilities.  相似文献   

16.
Capillary electrophoretic analysis of individual submicrometer size particles has been previously done using custom-built instruments. Despite that these instruments provide an excellent signal-to-noise ratio for individual particle detection, they are not capable of performing automated analyses of particles. Here we report the use of a commercial Beckman P/ACE MDQ capillary electrophoresis (CE) instrument with on-column laser-induced fluorescence (LIF) detection for the automated analysis of individual particles. The CE instrument was modified with an external I/O board that allowed for faster data acquisition rates (e.g. 100 Hz) than those available with the standard instrument settings (e.g. 4 Hz). A series of eight hydrodynamic injections expected to contain 32 +/- 6 particles, each followed by an electrophoretic separation at -300 V cm(-1) with data acquired at 100 Hz, showed 28 +/- 5 peaks corresponding to 31.9 particles as predicted by the statistical overlap theory. In contrast, a similar series of hydrodynamic injections followed by data acquisition at 4 Hz revealed only 8 +/- 3 peaks suggesting that the modified system is needed for individual particle analysis. Comparison of electropherograms obtained at both data acquisition rates also indicate: (i) similar migration time ranges; (ii) lower variation in the fluorescence intensity of individual peaks for 100 Hz; and (iii) a better signal-to-noise ratio for 4 Hz raw data. S/N improved for 100 Hz when data were smoothed with a binomial filter but did not reach the S/N values previously reported for post-column LIF detection. The proof-of-principle of automated analysis of individual particles using a commercially available CE system described here opens exciting possibilities for those interested in the study and analyses of organelles, liposomes, and nanoparticles.  相似文献   

17.
18.
We describe a highly sensitive CE with laser-induced fluorescence (LIF) detection for the analysis of N-linked oligosaccharides in glycoproteins using rhodamine 110 as a fluorescence derivatization reagent. One CE separation is performed using a fused-silica capillary and neutral pH buffer conditions and allows for the separation of sialo-oligosaccharides according to the number of sialic acids. An alternate separation is performed using the same capillary and acidic pH buffer conditions, enabling the separation of asialo-oligosaccharides according to their sizes. The derivatization and separation conditions for the analysis of sialo- and asialo-oligosaccharides were optimized. Furthermore, we applied the proposed method for the analyses of N-linked sialo- and asialo-oligosaccharides in glycoproteins (ribonuclease B, fetuin, and recombinant human erythropoietin).  相似文献   

19.
A miniaturized capillary electrophoresis (CE) system with UV-Vis detection was coupled to a flow injection (FI) system for achieving high throughput continuous sample introduction. The cassette of a commercial CE instrument was modified to hold a 6.5 cm long silica capillary and a flow-through waste reservoir. The cassette was inserted into the flow-cell chamber of a commercial UV detector, with the light beam focused on the capillary and collected by two ball lenses on the cassette. The capillary inlet, left outside the cassette and detector, was positioned on the top of a vertical 3.5 mm diameter glass rod, in close contact with an electrode. Samples injected through the FI system dropped freely on top of the pillar, covering the capillary inlet and electrode. Continuous sample introduction was achieved for CE separations under non-interrupted separation voltage, which was isolated from the FI system through the discontinuity of droplets. The newly developed interface and UV detection system was used for fast separation of sulphamethoxazole (SMZ) and trimethoprim (TMP) in sulphatrim tablets, achieving a high throughput of over 48 h−1, and a low carryover of 2%. Separation efficiencies of 8 μm plate height and detection limits of 1.0 mg l−1 for SMZ and 0.5 mg l−1 (3σ) for TMP were obtained.  相似文献   

20.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号