首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

2.
Highly emissive Eu3+:YVO4 nanocrystals were successfully prepared by the hydrothermal method. The average diameter of grains was determined to be 15 nm. Transparent polymer nanocomposites composed of PMMA and well dispersed Eu3+:YVO4 nanocrystals were fabricated by in situ polymerization. The nanocrystalline powders and nanocomposites were characterized by scanning and transmission electron microscopy (TEM) and X-ray diffraction (XRD). The luminescence properties of the obtained nanocomposites were investigated and compared with the starting powders and Eu3+:YVO4 single crystal. The effect of the polymeric host on the luminescence properties of Eu3+:YVO4 is presented and discussed.  相似文献   

3.
YVO4:Eu, and YVO4:Eu/SiO2 nanocrystals (NCs) were prepared by hydrothermal method with citrate as capping ligands. Their morphologies, structures, components, and photoluminescence properties were investigated and presented in this paper. A remarkable fluorescence enhancement up to 2.17 times was observed in colloidal YVO4:Eu/SiO2 NCs, compared to that of colloidal YVO4:Eu NCs. This is mainly attributed to the formation of the outer protecting layers of biocompatible SiO2 shells; which shield the Eu3+ ions effectively from water and thus reduces the deleterious effects of water on the luminescence. Meanwhile, on the basis of laser selective excitation, two kinds of luminescent centers were confirmed in the NCs, namely, inner Eu3+ ions and surface Eu3+ ions. The surface modifications for YVO4:Eu NCs effectively reduced the surface defects and accordingly enhanced the luminescence. The core/shell NCs exhibited long fluorescence lifetime and high photostability under ultraviolet radiation.  相似文献   

4.
The emission intensity of the peak at 612 nm (5D07F2) of the Eu3+ ions activated SnO2 nanocrystals (doped and coated) is found to be sensitive to the nanoenvironment. We have compared the luminescence efficiencies of the nanocrystals of SnO2 doped by Eu2O3 with those of SnO2 coated by Eu2O3 and we found that the intensities are significantly higher in coated nanocrystals. Furthermore, it is clear from luminescence intensity measurements that Eu3+ ions occupy low symmetry sites in the Eu2O3 coated SnO2 nanocrystal. The analysis suggests that the radiative relaxation rate is higher in Eu2O3 coated SnO2 nanocrystals than Eu2O3 doped SnO2 nanocrystals due to the asymmetric environment of Eu3+ ions in coated samples.  相似文献   

5.
A nonhydrolytic hot solution synthesis technique was used to grow monodisperse ternary oxide nanocrystals of ZnGa2O4:Eu3+. The shape of ZnGa2O4:Eu3+ nanocrystals was a function of the type of precursor, and their size was controlled by changing the concentration ratio of Zn precursor to surfactant. The crystal structure of synthesized ZnGa2O4 nanocrystals was a cubic spinel with no detectable secondary phases. Photoluminescence of red-emitting ZnGa2O4:Eu3+ nanocrystals resulted in a high (5D0-7F2)/(5D0-7F1) intensity ratio, suggesting that the Eu3+ ions occupy tetrahedral Zn2+ sites or distorted octahedral Ga3+ sites with no inversion symmetry in ZnGa2O4 nanocrystals.  相似文献   

6.
A sol-gel technique emphasizing the Pechini process has been employed for the preparation of nano-crystal Eu3+-doped YVO4 phosphor. The precursor powders were heated at 800 °C for 3 h to obtain good crystallinity with better luminescence. XRD results indicate that the second phase is not presented when the Eu3+ ion concentration is increased up to 50 mol%. The absorption and photoluminescent (PL) studies indicated that the energy is absorbed first by the host and then transferred to the emitting level of the Eu3+ ions. Excitation at 318 nm in terms of Eu3+ concentrations in YVO4 powders shows that the YVO4 phosphors display bright red luminescence at about 618 nm belonging to the 5D07F2 electric dipole transition, and a weak band in the orange region of the 5D07F1 transition at 594 nm. In addition, the time-resolved 5D07F2 transition presents a single-exponential decay behavior, revealing the decay mechanism of the 5D07F2 transition is a single decay component between Eu3+ ions only. The saturation of the emission intensity excited by the CTS when the Eu3+ concentration is 10 mol%. The concentration quenching is active when the Eu3+ concentration is larger than 10 mol%, and the critical distance is about 5.75 Å.  相似文献   

7.
Phosphate (P2O5+K2O+BaO+Al2O3+Eu2O3) and fluorophosphate (P2O5+K2O+BaO+BaF2+Al2O3+Eu2O3) glasses with different Eu3+ ion concentrations have been prepared and characterized through optical absorption, photoluminescence and decay times. An intense red luminescence is observed from the 5D0 emitting level of Eu3+ ions in these glasses. The relative luminescence intensity ratio of 5D07F25D07F1 transitions has been evaluated to estimate the local site symmetry around the Eu3+ ions. The emission spectra of these glasses show a complete removal of degeneracy for the 5D07F1 and 5D07F2 transitions. Second and fourth rank crystal-field (CF) parameters have been calculated together with the CF strength parameter by assuming the C2v symmetry for the Eu3+ ions in both the phosphate and fluorophosphate glasses. Judd-Ofelt parameters have been evaluated from the luminescence intensity ratios of 5D07FJ (J=2, 4 and 6) to 5D07F1 transitions. These parameters have been used to derive radiative properties such as transition probabilities, branching ratios, radiative lifetimes and peak stimulated emission cross-sections for the 5D07FJ transitions. Decay curves of the 5D0 level of Eu3+ ions in these two Eu3+:glass systems have been measured by monitoring the 5D07F2 transition (611 nm) at room temperature. The experimental lifetime of the 5D0 level in the title glasses is found to be higher than Eu3+-doped niobium phosphate glasses. The analysis indicates that the lifetime of the 5D0 level is found to be less sensitive to the Eu3+ ion concentration and addition of BaF2 has no significant effect on the optical properties of Eu3+-doped phosphate glasses.  相似文献   

8.
YVO4: Bi3+, Eu3+nanophosphors are prepared by the citrate-assisted low-temperature wet chemical synthesis. When the colloidal solution is aged at 60 °C, the crystalline YVO4: Bi3+, Eu3+ nanorods are formed from the amorphous gel precursors, as confirmed by transmission electron microscopy and X-ray diffractometry (XRD). YVO4: Bi3+, Eu3+ nanophosphors emit red through energy transfer from Bi3+ to Eu3+ under near-UV-light excitation. The emission intensity increases with increasing the fraction of the crystalline phase during aging. The excitation peak corresponding to Bi3+-V5+ charge transfer relative to those of O2−-V5+ and O2−-Eu3+ charge transfers gradually becomes strong until the completion of the crystallization, although the contents of individual Bi3+ and Eu3+ ions incorporated into YVO4 keep constant. When the aging is continued after the completion of the crystallization, the content of incorporated Bi3+ gradually increases, and hence the emission intensity decreases as a result of the energy migration among Bi3+ ions. These results suggest that in addition to the fraction of the crystalline phase and the contents of incorporated Bi3+ and Eu3+ ions, the local chemical states around Bi3+ play significant roles in photoluminescence properties.  相似文献   

9.
YBO3:Eu3+/Tb3+ nanocrystalline thin films were successfully deposited onto quartz glass substrates by Pechini sol-gel dip-coating method, using rare-earth nitrates and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence property of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and fluorescence spectrophotometer. The results of XRD, AFM, XPS and FTIR revealed that the films were composed of spherical YBO3:Eu3+/Tb3+ nanocrystals with average grain size of 80 nm. The YBO3:Eu3+ film exhibited strong orange emission at 595 nm and red emission at 615 nm, which were, respectively ascribed to the (5D07F1) and (5D07F2) transitions of Eu3+. The YBO3:Tb3+ film showed dominant green emission at 545 nm due to the 5D4-7F5 transition of Tb3+.  相似文献   

10.
The nanocrystal samples of titanium dioxide doped with europium ion (Eu3+/TiO2 nanocrystal) are synthesized by the sol-gel method with hydrothermal treatment. The Eu3+ contents (molar ratio) in the samples are 0, 0.5%, 1%, 2%, 3% and 4%. The X-ray diffraction, UV-Vis spectroscopy data and scanning electron microscope image show that crystallite size is reduced by the doping of Eu3+ into TiO2. Comparing the Raman spectra of TiO2 with Eu3+/TiO2 (molar ratio Eu3+/TiO2=1%, 2% and 4%) nanocrystals at different annealing temperatures indicates that the anatase-to-rutile phase transformation temperatures of Eu3+/TiO2 nanocrystals are higher than that of TiO2. This is due to the formation of Eu-O-Ti bonds on the surface of the TiO2 crystallite, as characterized by the X-ray photoelectron spectroscopy. The photoluminescence spectra of TiO2 in Eu3+/TiO2 nanocrystals are interpreted by the surface self-trapped and defect-trapped exciton relaxation. The photoluminescence of Eu3+ in Eu3+/TiO2 nanocrystals has the strongest emission intensity at 2% of Eu3+ concentration.  相似文献   

11.
Ag enwrapped Y2O3:Eu3+ nanoparticles were prepared by a wet chemistry method, which was dispersed in liquid (glycol) or dried to powders. Their luminescence properties were studied in comparison to those in the un-enwrapped ones. The results demonstrated that in glycol the 5D0-7F2 transitions for Ag enwrapped Y2O3:Eu3+ nanoparticles became stronger than that for un-enwrapped ones, while the excitation charge transfer band shifted blue. On the contrary, the 5D0-7F2 transitions in Ag enwrapped Y2O3:Eu3+ powders became weaker than those in the un-enwrapped ones. It was suggested that in liquid the Ag shells thinly deposited in the surface of Y2O3:Eu3+ and insulated the Y2O3:Eu3+ from the liquid, which contained large organic vibration modes. As a result, the surface nonradiative energy transfer from Eu3+ to the organic modes decreased, and emission intensity of 5D0-7F2 increased. In the Y2O3:Eu3+ powders, the Ag shells absorbed the excitation light, leading to the decrease in excitation density and the intensity of 5D0-7F2.  相似文献   

12.
YVO4:Bi3+,Eu3+ nanophosphors at a high Bi3+ concentration of 15 at% are synthesized from a Bi3+ source, nitrates of yttrium and europium(III), and sodium orthovanadate(V) by a low-temperature aqueous precipitation in the presence of citrate ions. When an ethylene glycol solution of bismuth(III) nitrate is used as a Bi3+ source, YVO4:Bi3+,Eu3+ nanophosphors of ∼20 nm in size crystallize during aging at 85 °C without any by-products where the contents of Bi3+ and Eu3+ incorporated into crystalline YVO4 are close to the respective nominal contents, as confirmed by transmission electron microscopy, X-ray diffractometry and X-ray fluorescent analysis. These nanophosphors show red emission corresponding to the f-f transition of Eu3+ under the excitation of Bi3+-V5+ charge transfer. When aging is continued after the completion of the crystallization, the photoluminescence intensity of nanophosphors reaches the constant value. This is the improved behavior in comparison to our previous work, where the photoluminescence intensity decreases after the prolonged aging because of the inhomogeneous doping of Bi3+ ions, and hence the concentration quenching.  相似文献   

13.
Y1−x La x VO4:Eu3+ phosphors were synthesized using a solid-state reaction. The microstructure and surface morphology of the Y1−x La x VO4:Eu3+ phosphors were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. PL measurements of these phosphors revealed the characteristic Eu3+ emissions due to 5D07F1 and 5D07F2 transitions. The Y1−x La x VO4:Eu3+ phosphors showed strong red emission at 619 nm, which radiated from the hypersensitive transition 5D07F2 of Eu3+ ions. In particular, the incorporation of La into the YVO4 lattice could induce a remarkable increase in PL. The highest emission intensity was observed in Y0.2La0.8VO4:Eu3+, whose brightness was increased by more than 100 fold compared to that of the LaVO4:Eu3+ phosphors. The Y1−x La x VO4:Eu3+ phosphors with highly enhanced luminescence are expected to have applications in display devices.  相似文献   

14.
Y2O3:Eu纳米晶中能量传递相互作用的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过浓度猝灭曲线确定了引起Y2O3纳米晶中Eu3+发光浓度猝灭的是交换相互作用.测量了两种颗粒尺寸下Eu3+5D07F2跃迁发光衰减曲线随掺杂浓度的变化,利用交换相互作用的理论衰减曲线对实验衰减曲线进行拟合.计算Eu3+离子的交换相互作用能量传递的效率,分析了Y2O3关键词: 能量传递 2O3Eu纳米晶')" href="#">Y2O3Eu纳米晶 发光衰减  相似文献   

15.
The spectral distributions of the visible absorption and fluorescence emission under electron beam excitation of Eu3+-doped (Y2O3) and (YVO4) powders have been detected and analyzed. (Y2O3: Eu3+) has a cubicC crystal structure with a unit cell dimension a=10·61 Å. Its observed transitions from7 F 0 to many upper states have been recognized; the observed number of Stark components is in agreement with that based on theC 2 site symmetry of the Eu3+ ion in Y2O3. Eu3+-doped yttrium vanadate has a typical zircon tetragonal crystal structure with unit cell dimensions ofc=6·29 Å anda=7·11 Å. The observed transitions in (Eu3+: YVO4) have been identified and assigned in accordance with theD 2d site symmetry of the Eu3+ ion in this lattice.The authors would like to express their deep gratitude to Professor G. F. J.Garlick, University of Hull, England, for offering experimental facilities in his Physics Department.  相似文献   

16.
MgO:Eu3+ nanocrystals with average diameter around 15 nm were prepared via a facile combustion method under a weak reductive atmosphere at temperature as low as 300°C. The photoluminescence spectra showed that the MgO:Eu3+ nanocrystals emit white light, the hypersensitive transition (5 D 07 F j of Eu3+) emission was prominent in the emission spectra resulting from the noinversion symmetry local site at which Eu3+ ions were located. Two kinds of luminescence sites of Eu3+ are identified by means of the fluorescence decay and site-selective spectroscopy. The excitation and absorption spectra indicated that the absorption of surface state decreased with the increase of Eu3+ concentration, meaning that the surface defect decreased through Eu3+ doping for some of them located at the disordered sites near the surface or absorbed at the surface of MgO host. Meanwhile, absorptivity and CIE chromaticity coordinates of all samples were measured; the results were in accordance with the excitation and absorption spectra and photoluminescence spectra, respectively.  相似文献   

17.
In an effort to obtain enhanced luminescence under photoexcitation as well as to clarify the underlying correlation between non-radiative sites and a surface modifier in a nanoscale phosphor, YVO4:Eu3+ was synthesized via a polyethylene glycol (PEG)-assisted hydrothermal process. The temperature variable photoluminescence reveals that the overall emission behaviors of PEG-added YVO4:Eu3+ phosphor was similar to those of a post-annealed sample without PEG addition. This polymeric agent induces a rough thin layer onto the YVO4:Eu3+ nanoparticle during synthetic procedure, resulting in the prevention of surface-adsorbed species known as non-radiative sites such as NH4+ as well as hydroxyl groups.  相似文献   

18.
张晓伟  林涛  徐骏  徐岭  陈坤基 《中国物理 B》2012,21(1):18101-018101
SnO2 nanocrystal and rare-earth Eu3+ ion co-doped SiO2 thin films are prepared by sol-gel and spin coating methods. The formation of tetragonal rutile structure SnO2 nanocrystals with a uniform distribution is confirmed by X-ray diffraction and transmission electron microscopy. Fourier transform infrared spectroscopy is used to investigate the densities of the hydroxyl groups, and it is found that the emission intensity from the 5D0-7F2 transitions of the Eu3+ ions is enhanced by two orders of magnitude due to energy transfer from the oxygen-vacancy-related defects of the SnO2 nanocrystals to nearby Eu3+ ions. The influences of the amounts of Sn and the post-annealing temperatures are systematically evaluated to further understand the mechanism of energy transfer. The luminescence intensity ratio of Eu3+ ions from electric dipole transition and magnetic dipole transition indicate the different probable locations of Eu3+ ions in the sol-gel thin film, which are further discussed based on temperature-dependent photoluminescence measurements.  相似文献   

19.
A series of different concentrations of Eu3+ and Dy3+ ions co-doping yttrium vanadate phosphors coated with Fe3O4 (YVO4:Eu3+, Dy3+@Fe3O4) was successful prepared by using two steps route including sol?Cgel method and hydrothermal method. The resulting phase formation, particle morphology, structure, luminescent, and magnetic properties were examined by X-ray diffraction, transmission electron microscopy, photoluminescence spectra, and vibrating sample magnetometer. The results indicate that the diameter of the YVO4:Eu3+, Dy3+@Fe3O4 nanocomposites is 100?C300?nm. The special saturation magnetization Ms of the nanocomposites is 53?emu/g. Additionally, the emission intensities of YVO4:Eu3+ or Dy3+ ions are regularly changed with the emission doping concentrations. After coating with Fe3O4, the variation of the luminescent intensity of YVO4:Eu3+, Dy3+@Fe3O4 magnetic phosphors is different.  相似文献   

20.
Although SiO2 crystals have been used in electroluminescence devices and thermoluminescence (TL) dosimeters, the emission mechanism of TL has not yet been clearly explained. Recently, as we could get amorphous and highly pure SiO2 prepared by the sol-gel method, we have investigated the TL emission mechanism using Al3+- and/or Eu3+-doped SiO2 crystalline samples prepared by the heat-treatment under much lower temperature that the melting point of SiO2. The TL spectrum of the Eu3+-doped sample displayed several peaks, including two main peaks due to the electron transitions from 5D2 to 7F5 (ca. 570 nm) and from 5D0 to 7F2 (ca. 610 nm). As doping concentration increased, all the peak intensities reduced from maximum values except that due to the electron transition from 5D0 to 7F2. These observations are thought to result from a cross-relaxation process due to the lack of inversion symmetry at the Eu3+ site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号