首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Recently Bellen, Jackiewicz and Zennaro have studied stability properties of Runge-Kutta (RK) methods for neutral delay differential equations using a scalar test equation. In particular, they have shown that everyA-stable collocation method isNP-stable, i.e., the method has an analogous stability property toA-stability with respect to the test equation. Consequently, the Gauss, Radau IIA and Lobatto IIIA methods areNP-stable. In this paper, we examine the stability of RK methods based on classical quadrature by a slightly different approach from theirs. As a result, we prove that the Radau IA and Lobatto IIIC methods equipped with suitable continuous extensions are alsoNP-stable by virtue of fundamental notions related to those methods such as simplifying conditions, algebraic stability, and theW-transformation.  相似文献   

2.
It is well known that high stage order is a desirable property for implicit Runge-Kutta methods. In this paper it is shown that it is always possible to construct ans-stage IRK method with a given stability function and stage orders−1 if the stability function is an approximation to the exponential function of at least orders. It is further indicated how to construct such methods as well as in which cases the constructed methods will be stiffly accurate.  相似文献   

3.
In this paper we consider a new fourth-order method of BDF-type for solving stiff initial-value problems, based on the interval approximation of the true solution by truncated Chebyshev series. It is shown that the method may be formulated in an equivalent way as a Runge–Kutta method having stage order four. The method thus obtained have good properties relatives to stability including an unbounded stability domain and large αα-value concerning A(α)A(α)-stability. A strategy for changing the step size, based on a pair of methods in a similar way to the embedding pair in the Runge–Kutta schemes, is presented. The numerical examples reveals that this method is very promising when it is used for solving stiff initial-value problems.  相似文献   

4.
Recently, we have proved that the Radau IA and Lobatto IIIC methods are P-stable, i.e., they have an analogous stability property to A-stability with respect to scalar delay differential equations (DDEs). In this paper, we study stability of those methods applied to multidimensional DDEs. We show that they have a similar property to P-stability with respect to multidimensional equations which satisfy certain conditions for asymptotic stability of the zero solutions. The conditions are closely related to stability criteria for DDEs considered in systems theory. Received October 8, 1996 / Revised version received February 21, 1997  相似文献   

5.
In this paper, we provide a one-step predictor-corrector method for numerically solving first-order differential initial-value problems with two fixed points. The method preserves the stability behaviour of the fixed points, which results in an efficient integrator for this kind of problem. Some numerical examples are provided to show the good performance of the method.  相似文献   

6.
This paper concerns the stability analysis of numerical methods for approximating the solutions to (stiff) initial value problems. Our analysis includes the case of (nonlinear) systems of differential equations that are essentially more general than the classical test equationU=U, with a complex constant.We explore the relation between two stability concepts, viz. the concepts of contractivity and weak contractivity.General Runge-Kutta methods, one-stage Rosenbrock methods and a notable rational Runge-Kutta method are analysed in some detail.  相似文献   

7.
This paper is concerned with the numerical properties of θ-methods for the solution of alternately advanced and retarded differential equations with piecewise continuous arguments. Using two θ-methods, namely the one-leg θ-method and the linear θ-method, the necessary and sufficient conditions under which the analytic stability region is contained in the numerical stability region are obtained, and the conditions of oscillations for the θ-methods are also obtained. It is proved that oscillations of the analytic solution are preserved by the θ-methods. Furthermore, the relationships between stability and oscillations are revealed. Some numerical experiments are presented to illustrate our results.  相似文献   

8.
A natural Runge-Kutta method is a special type of Runge-Kutta method for delay differential equations (DDEs); it is known that any one-step collocation method is equivalent to one of such methods. In this paper, we consider a linear constant-coefficient system of DDEs with a constant delay, and discuss the application of natural Runge-Kutta methods to the system. We show that anA-stable method preserves the asymptotic stability property of the analytical solutions of the system.  相似文献   

9.
The class of linearly-implicit parallel two-step peer W-methods has been designed recently for efficient numerical solutions of stiff ordinary differential equations. Those schemes allow for parallelism across the method, that is an important feature for implementation on modern computational devices. Most importantly, all stage values of those methods possess the same properties in terms of stability and accuracy of numerical integration. This property results in the fact that no order reduction occurs when they are applied to very stiff problems. In this paper, we develop parallel local and global error estimation schemes that allow the numerical solution to be computed for a user-supplied accuracy requirement in automatic mode. An algorithm of such global error control and other technical particulars are also discussed here. Numerical examples confirm efficiency of the presented error estimation and stepsize control algorithm on a number of test problems with known exact solutions, including nonstiff, stiff, very stiff and large-scale differential equations. A comparison with the well-known stiff solver RODAS is also shown.  相似文献   

10.
P-stability is an analogous stability property toA-stability with respect to delay differential equations. It is defined by using a scalar test equation similar to the usual test equation ofA-stability. EveryP-stable method isA-stable, but anA-stable method is not necessarilyP-stable. We considerP-stability of Runge-Kutta (RK) methods and its variation which was originally introduced for multistep methods by Bickart, and derive a sufficient condition for an RK method to have the stability properties on the basis of an algebraic characterization ofA-stable RK methods recently obtained by Schere and Müller. By making use of the condition we clarify stability properties of some SIRK and SDIRK methods, which are easier to implement than fully implicit methods, applied to delay differential equations.  相似文献   

11.
This paper deals with numerical methods for the solution of linear initial value problems. Two main theorems are presented on the stability of these methods. Both theorems give conditions guaranteeing a mild error growth, for one-step methods characterized by a rational function ϕ(z). The conditions are related to the stability regionS={z:z∈ℂ with |ϕ(z)|≤1}, and can be viewed as variants to the resolvent condition occurring in the reputed Kreiss matrix theorem. Stability estimates are presented in terms of the number of time stepsn and the dimensions of the space. The first theorem gives a stability estimate which implies that errors in the numerical process cannot grow faster than linearly withs orn. It improves previous results in the literature where various restrictions were imposed onS and ϕ(z), including ϕ′(z)≠0 forz∈σS andS be bounded. The new theorem is not subject to any of these restrictions. The second theorem gives a sharper stability result under additional assumptions regarding the differential equation. This result implies that errors cannot grow faster thann β, with fixed β<1. The theory is illustrated in the numerical solution of an initial-boundary value problem for a partial differential equation, where the error growth is measured in the maximum norm.  相似文献   

12.
The stability and accuracy of a standard finite element method (FEM) and a new streamline diffusion finite element method (SDFEM) are studied in this paper for a one dimensional singularly perturbed connvection-diffusion problem discretized on arbitrary grids. Both schemes are proven to produce stable and accurate approximations provided that the underlying grid is properly adapted to capture the singularity (often in the form of boundary layers) of the solution. Surprisingly the accuracy of the standard FEM is shown to depend crucially on the uniformity of the grid away from the singularity. In other words, the accuracy of the adapted approximation is very sensitive to the perturbation of grid points in the region where the solution is smooth but, in contrast, it is robust with respect to perturbation of properly adapted grid inside the boundary layer. Motivated by this discovery, a new SDFEM is developed based on a special choice of the stabilization bubble function. The new method is shown to have an optimal maximum norm stability and approximation property in the sense that where u N is the SDFEM approximation in linear finite element space V N of the exact solution u. Finally several optimal convergence results for the standard FEM and the new SDFEM are obtained and an open question about the optimal choice of the monitor function for the moving grid method is answered. This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship through Peking University.  相似文献   

13.
In this paper we present a family of explicit formulas for the numerical solution of differential equations of fractional order. The proposed methods are obtained by modifying, in a suitable way, Fractional-Adams–Moulton methods and they represent a way for extending classical Adams–Bashforth multistep methods to the fractional case. The attention is hence focused on the investigation of stability properties. Intervals of stability for kk-step methods, k=1,…,5k=1,,5, are computed and plots of stability regions in the complex plane are presented.  相似文献   

14.
Summary A trajectory problem is an initial value problem where the interest lies in obtaining the curve traced by the solution, rather than in finding the actual correspondence between the values of the parameter and the points on that curve. This paper introduces a family of multi-stage, multi-step numerical methods to integrate trajectory problems whose solution is on a spherical surface. It has been shown that this kind of algorithms has good numerical properties: consistency, stability, convergence and others that are not standard. The latest ones make them a better choice for certain problems.  相似文献   

15.
To prove convergence of numerical methods for stiff initial value problems, stability is needed but also estimates for the local errors which are not affected by stiffness. In this paper global error bounds are derived for one-leg and linear multistep methods applied to classes of arbitrarily stiff, nonlinear initial value problems. It will be shown that under suitable stability assumptions the multistep methods are convergent for stiff problems with the same order of convergence as for nonstiff problems, provided that the stepsize variation is sufficiently regular.  相似文献   

16.
It is well known that the numerical solution of stiff stochastic ordinary differential equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those arising from stochastic partial differential equations, explicit methods with extended stability regions can be very effective. In the present paper our aim is to derive explicit Runge–Kutta schemes for non-commutative Stratonovich stochastic differential equations, which are of weak order two and which have large stability regions. This will be achieved by the use of a technique in Chebyshev methods for ordinary differential equations.  相似文献   

17.
Since implicit integration schemes for differential equations which use Krylov methods for the approximate solution of linear systems depend nonlinearly on the actual solution a classical stability analysis is difficult to perform. A different, weaker property of autonomous dissipative systemsy′=f(y) is that the norm ‖f(y(t))‖ decreases for any solutiony(t). This property can also be analysed for W-methods using a Krylov-Arnoldi approximation. We discuss different additional assumptions onf and conditions on the Arnoldi process that imply this kind of attractivity to equilibrium points for the numerical solution. One assumption is general enough to cover quasilinear parabolic problems. This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

18.
A new kind of trigonometrically fitted embedded pair of explicit ARKN methods for the numerical integration of perturbed oscillators is presented in this paper. This new pair is based on the trigonometrically fitted ARKN method of order five derived by Yang and Wu in [H.L. Yang, X.Y. Wu, Trigonometrically-fitted ARKN methods for perturbed oscillators, Appl. Numer. Math. 9 (2008) 1375–1395]. We analyze the stability properties, phase-lag (dispersion) and dissipation of the higher-order method of the new pair. Numerical experiments carried out show that our new embedded pair is very competitive in comparison with the embedded pairs proposed in the scientific literature.  相似文献   

19.
Linear and non-linear stability for general linear methods   总被引:1,自引:0,他引:1  
We explore the interrelation between a number of linear and non-linear stability properties. The weakest of these,A-stability, is shown by counterexample not to imply any of the various versions ofAN-stability introduced in the paper and two of these properties, weak and strongAN-stability, are also shown not to be equivalent. Finally, another linear stability property defined here, EuclideanAN-stability, is shown to be equivalent to algebraic stability.  相似文献   

20.
The use of explicit methods in the numerical treatment of differential equations of fractional order is an area not yet widely investigated. In this paper stability properties of some multistep methods of explicit type are investigated and new methods with larger intervals of stability are proposed. Some numerical experiments are presented in order to validate theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号