首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The motion of two immiscible liquids in a plane channel is analyzed for the case in which the flow conditions and the interactions between the liquids and the solid surface maintain the displaced fluid attached to the wall. The Galerkin Finite Element Method is used to compute the velocity field and the configuration of the interface between the two fluids. We compare the residual mass fraction left on the wall with its two counterparts in capillary tubes, namely residual mass fraction and dimensionless layer thickness of the displaced fluid. The main result of this comparison was that although there is a qualitative similarity concerning the layer thickness between the two cases, the residual fraction of mass presented an important difference, showing that when the aspect ratio of the capillary passage is large there is an increase in the displacement efficiency. The thickness of the displaced liquid film attached to the channel walls is a function of the capillary number (Ca) and the viscosity ratio (Nμ). A map of streamlines in the Cartesian space (CaNμ) with the different flow regimes of the problem is presented. We also showed that we can adapt the available analytical results obtained for gas-displacement in capillary tubes to the plane channel case, for low values of Ca.  相似文献   

2.
The present work reports an experimental study of the falling liquid film around single Taylor bubbles rising in vertical tubes filled with stagnant liquids by using a pulse-echo ultrasonic technique. The experiments were carried out in acrylic tubes 2.0  m long, with inner diameters of 0.019, 0.024 and 0.034  m, with five water-glycerin mixtures, corresponding to inverse viscosity number ranging from 15 to 22422. The rising bubble and the falling liquid film were measured by using ultrasonic transducers located at the one side of the tube. The velocity and profile of the Taylor bubble, and the development length and equilibrium thickness of the falling liquid film around the bubble were obtained by the ultrasonic signals processing. Based on the experimental results of the present study, several correlations available to estimate the equilibrium thicknesses of liquid films falling around Taylor bubbles were evaluated and new correlations were proposed to estimate the dimensionless equilibrium film thickness and the film development length respectively.  相似文献   

3.
The immiscible displacement in a capillary plane channel of a Newtonian liquid by a viscoplastic one that obeys a Papanastasiou’s constitutive equation is numerically analyzed. An elliptic mesh generation technique, coupled with the Galerkin finite element method is used to determine the velocity field and the configuration of the interface between the two materials. We investigate the displacement efficiency and the flow patterns of the problem as functions of the dimensionless parameters that govern the problem: the capillary number (Ca), the viscosity ratio of the two fluids (N η ) and the yield number, (τ0). The numerical results showed that for a fixed viscosity ratio, the fraction of mass attached to the wall is a decreasing function of τ0. We constructed maps of streamlines in the Cartesian space defined by τ0 and Ca for fixed viscosity ratios in order to capture the rough location of bypass and recirculating flow regimes. Higher yield number values induce bypass flow regimes, especially for high Ca. The dimensionless forms of the momentum conservation equation and the force balance at the interface were essential for the understanding of the role played by the dimensionless numbers that govern the problem.  相似文献   

4.
A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on the dynamics of an air bubble rising in a vertical tube containing water or a solution of Carboxymethylcellulose (CMC) in water. The mass fraction (mf) of CMC in the solution is varied in the range 0.1%  mf  1% to accommodate zero-shear dynamic viscosities in the range 0.009–2.99 Pa-s. It was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bubble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to observations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in mf is found to be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct ripples are observed to occur on the bubble surface at higher values of mf, the locations of which remain stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of mf. It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow amplitude.  相似文献   

5.
The film thickness of pseudoplastic liquids flowing down a vertical wall can be decreased by the longitudinal oscillations of the wall. This phenomenon is treated in the term of the flow enhancement which is common in the flows in oscillating tube. The theoretical predictions of the flow rate enhancement are reviewed for the boundary layer and creeping flow regimes. The experiments were done in the transient regime between these two asymptotic regimes. As high as five-fold decrease of the film thickness, which corresponds to the flow rate enhancements 105, was measured with concentrated kaolin suspensions with the flow index 0.15. Empirical correlations which describe the flow rate enhancement and the film thickness of the liquids with the power law viscosity function in the transient regime were found.  相似文献   

6.
The study considers the prediction of the entrained liquid fraction in adiabatic gas–liquid annular two-phase flow in vertical pipes. Nine empirical correlations have been tested against an experimental data bank drawn together in this study containing 1504 points for 8 different gas–liquid combinations and 19 different tube diameters from 5.00 mm to 57.1 mm. The correlation of Sawant, Ishii and Mishima and the one of Oliemans, Pots and Trompé were found to best reproduce the available data. A new correlating approach, derived from both physical intuition and dimensional analysis and capable of providing further physical insight into the liquid film atomization process, was proposed and worked better than any of the existing methods. This new correlation is based on the core flow Weber number that is also a controlling dimensionless group in determining the wall shear stress and associated frictional pressure gradient of annular flows.  相似文献   

7.
Slug flow is one of the representative flow regimes of two-phase flow in micro tubes. It is well known that the thin liquid film formed between the tube wall and the vapor bubble plays an important role in micro tube heat transfer. In the present study, experiments are carried out to clarify the effects of parameters that affect the formation of the thin liquid film in micro tube two-phase flow. Laser focus displacement meter is used to measure the thickness of the thin liquid film. Air, ethanol, water and FC-40 are used as working fluids. Circular tubes with five different diameters, D = 0.3, 0.5, 0.7, 1.0 and 1.3 mm, are used. It is confirmed that the liquid film thickness is determined only by capillary number and the effect of inertia force is negligible at small capillary numbers. However, the effect of inertia force cannot be neglected as capillary number increases. At relatively high capillary numbers, liquid film thickness takes a minimum value against Reynolds number. The effects of bubble length, liquid slug length and gravity on the liquid film thickness are also investigated. Experimental correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number is proposed.  相似文献   

8.
Results are reported of an experimental investigation of gas–liquid counter-current flow in a vertical rectangular channel with 10 mm gap, at rather short distances from liquid entry. Flooding experiments are carried out using air and various liquids (i.e., water, 1.5% and 2.5% aqueous butanol solutions) at liquid Reynolds numbers ReL < 350. Visual observations and fast recordings suggest that the onset of flooding at low ReL (<250) is associated with liquid entrainment from isolated waves, whereas “local bridging” is dominant at the higher ReL examined in this study. Significant reduction of flooding velocities is observed with decreasing interfacial tension, as expected. Instantaneous film thickness measurements show that under conditions approaching flooding, a sharp increase of the mean film thickness, of mean wave amplitude and of the corresponding RMS values takes place. Film thickness power spectra provide evidence that by increasing gas flow the wave structure is significantly affected; e.g., the dominant wave frequency is drastically reduced. These data are complemented by similar statistical information from instantaneous wall shear stress measurements made with an electrochemical technique. Power spectra of film thickness and of shear stress display similarities indicative of the strong effect of waves on wall stress; additional evidence of the drastic changes in the liquid flow field near the wall due to the imposed gas flow, even at conditions below flooding, is provided by the RMS values of the wall stress. A simple model is presented for predicting the mean film thickness and mean wall shear stress under counter-current gas–liquid flow, below critical flooding velocities.  相似文献   

9.
Dimensional analysis has been applied to an unsteady pulsatile flow of a shear-thinning power-law non-Newtonian liquid. An experiment was then designed in which both Newtonian and non-Newtonian liquids were used to model blood flow through a large-scale (38.5 mm dia.), simplified, rigid arterial junction (a distal anastomosis of a femorodistal bypass). The flow field within the junction was obtained by Particle Imaging Velocimetry and near-wall velocities were used to calculate the wall shear stresses. Dimensionless wall shear stresses were obtained at different points in the cardiac cycle for two different but dynamically similar non-Newtonian fluids; the good agreement between the measured dimensionless wall shear stresses confirm the validity of the dimensional analysis. However, blood exhibits a constant viscosity at high-shear rates and to obtain complete dynamic similarity between large-scale experiments and life-scale flows, the high-shear viscosity also needs to be included in the analysis. How this might be done is discussed in the paper.  相似文献   

10.
A thin film of low-viscosity lubricating liquid between a solid wall and a viscous material reduces shear stress on the latter and tends to make it flow as though it were slipping along the wall. The result when the lubricated material is being squeezed out of the gap between approaching parallel plates is flow more nearly irrotational, or extensional, the more effective the lubricating film on the plates. Two Newtonian analyses of this flow situation are reported. One is an approximate, asymptotic analytical solution for Newtonian lubricating flow in the films and combined mixed flow, shear and extension, in the viscous layer. The second is a full two-dimensional axisymmetric solution of the momentum and continuity equations along with the kinematic condition which governs the motion of the interface. Both analyses indicate that there are two limiting flow regimes, depending on the ratio of the thickness of each of the two phases to radius and on the viscosity ratio of the two liquids. In one limit the flow is parallel squeezing and the lubricant layer slowly thins and persists a long time. In the other the lubricant is expelled preferentially. Implications of the results are discussed for rheological characterization of viscoelastic liquids and for prediction of lubricated or autolubricated flows in processing situations.  相似文献   

11.
Numerical simulation of air–water slug flows accelerated from steady states with different initial velocities in a micro tube is conducted. It is shown that the liquid film formed between the gas bubble and the wall in an accelerated flow is significantly thinner than that in a steady flow at the same instantaneous capillary number. Specifically, the liquid film thickness is kept almost unchanged just after the onset of acceleration, and then gradually increases and eventually converges to that of an accelerated flow from zero initial velocity. Due to the flow acceleration, the Stokes layer is generated from the wall, and the instant velocity profile can be given by superposition of the Stokes layer and the initial parabolic velocity profile of a steady flow. It is found that the velocity profile inside a liquid slug away from the bubble can be well predicted by the analytical solution of a single-phase flow with acceleration. The change of the velocity profile in an accelerated flow changes the balance between the inertia, surface tension and viscous forces around the meniscus region, and thus the resultant liquid film thickness. By introducing the displacement thickness, the existing correlation for liquid film thickness in a steady flow (Han and Shikazono, 2009) is extended so that it can be applied to a flow with acceleration from an arbitrary initial velocity. It is demonstrated that the proposed correlation can predict liquid film thickness at Re < 4600 within the range of ±10% accuracy.  相似文献   

12.
In the present study, liquid film thicknesses in parallel channels with heights of H = 0.1, 0.3 and 0.5 mm are measured with two different optical methods, i.e., interferometer and laser focus displacement meter. Ethanol is used as a working fluid. Liquid film thicknesses obtained from two optical methods agree very well. At low capillary numbers, dimensionless liquid film thickness is in accordance with Taylor’s law. However, as capillary number increases, dimensionless liquid film thickness becomes larger than Taylor’s law for larger channel heights. It is attributed to the dominant inertial effect at high capillary numbers. Using channel height H for dimensionless liquid film thickness δ0/H and hydraulic diameter Dh = 2H as the characteristic length for Reynolds and Weber numbers, liquid film thickness in a parallel channel can be predicted well by the circular tube correlation previously proposed by the authors. This is because curvature differences between bubble nose and flat film region are identical in circular tubes and parallel channels.  相似文献   

13.
The flow of viscoplastic materials through staggered arrays of tubes is analyzed. The mechanical behavior of the materials is assumed to obey the generalized Newtonian liquid (GNL) model, with a viscosity function given by the biviscosity law. The governing equations of this flow are solved numerically using a finite-volume method with a non-orthogonal mesh. For a representative range of the relevant parameters, results are presented in the form of velocity, pressure and viscosity fields. The pressure drop is also given as a function of rheological and geometric parameters.  相似文献   

14.
In this work, the creeping flow of a viscoplastic fluid through a planar channel with an expansion followed by a contraction is analyzed numerically. The solution of the conservation equations of mass and momentum is obtained via the finite volume method. In order to model the non-Newtonian behavior of the fluid, it was used the generalized Newtonian fluid constitutive equation. The viscosity function was the one proposed by Souza Mendes and Dutra [Souza Mendes, P.R., Dutra, E.S.S., 2004. Viscosity function for yield-stress liquids. Appl. Rheol. 14, 296–302]. The yielded and unyielded regions are obtained for several combinations of rheological parameters. The influence of these parameters on pressure drop through the cavity is also obtained and analyzed.  相似文献   

15.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

16.
A new physical model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. To estimate the velocity profile in the liquid film, the liquid film was assumed to be in Couette flow forced by the interfacial velocity at the liquid–vapor interface. For simplifying the calculation procedures, the interfacial velocity was estimated by introducing an empirical power-law velocity profile. The resulting film thickness and heat transfer coefficient from the model were compared with the experimental data and the results obtained from the other condensation models. The results demonstrated that the proposed model described the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.  相似文献   

17.
An experimental investigation has been undertaken to understand the phase split of nitrogen gas/non-Newtonian liquid two-phase flow passing through a 0.5 mm T-junction that oriented horizontally. Four different liquids, including water and aqueous solutions of carboxymethyl cellulose (CMC) with different mass concentrations of 0.1, 0.2 and 0.3 wt%, were employed. Rheology experiments showed that different from water, CMC solutions in this study are pseudoplastic non-Newtonian fluid whose viscosity decreases with increasing the shear rate. The inlet flow patterns were observed to be slug flow, slug–annular flow and annular flow. The fraction of liquid taken off at the side arm for nitrogen gas/non-Newtonian liquid systems is found to be higher than that for nitrogen gas/Newtonian liquid systems in all inlet flow patterns. In addition, with increasing the pseudoplasticity of the liquid phase, the side arm liquid taken off increases, but the increasing degree varies with each flow pattern. For annular flow, the increasing degree is much greater than those for slug and slug–annular flows.  相似文献   

18.
Displacements of a viscous fluid by a miscible fluid of a lesser viscosity and density in cylindrical tubes were investigated experimentally. Details of velocity and Stokes streamline fields in vertical tubes were measured using a DPIV (digital particle image velocimetry) technique. In a reference frame moving with the fingertip, the streamline patterns around the fingertip obtained from the present measurements confirm the hypothesis of Taylor (1961) for the external patterns, and that of Petitjeans and Maxworthy (1996) for the internal patterns. As discussed in these papers, the dependent variable, m, a measure of the volume of viscous fluid left on the tube wall after the passage of the displacing finger, is a parameter that determines the flow pattern. When m>0.5 there is one stagnation point at the tip of the finger; when m<0.5 there are two stagnation points on the centerline, one at the tip and the other inside the fingertip, and a stagnation ring on the finger surface with a toroidal recirculation in the fingertip between the two stagnation points. The finger profile is obtained from the zero streamline of the streamline pattern.An erratum to this article can be found at  相似文献   

19.
A model for the dynamics of slender filaments of Herschel–Bulkley fluid is used to explore viscoplastic dripping under gravity and thinning under controlled extension (liquid bridges). The conditions required for fluid to yield are delineated, and the subsequent thinning and progression to pinch-off are tracked numerically. Calculations varying the dimensionless parameters of the problem are presented to illustrate the effect of surface tension, rheology, inertia (for dripping) and gravity. The theoretical solutions are compared with laboratory experiments using aqueous solutions of Carbopol and Kaolin suspensions. For drips and bridges, experiments with Carbopol are well matched by the theory, using a surface tension equal to that of water, even in situations when the fluid is not slender. Experiments with Kaolin do not compare well with theory for physically plausible values of the surface tension. Implications for rheometry and surface-tension inference are discussed.  相似文献   

20.
In this note, we present some results concerning the gas displacement of power-law liquids and visco-plastic Papanastasiou’s materials improving the understanding of the problem considered in Sousa et al. (2007) [1]. Specifically, we present: the fraction of mass attached to the wall for a viscosity-thickening power-law fluid, different transition patterns between by pass and full-recirculating flow regimes, expressions for the critical (in the sense proposed by Soares and Thompson (2009) [2]) fraction of residual mass as a function of the rheological parameter of interest, and fields of yielded and unyielded zones for the visco-plastic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号