首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In a recent paper by the current authors a new methodology called the Extended-Domain-Eigenfunction-Method (EDEM) was proposed for solving elliptic boundary value problems on annular-like domains. In this paper we present and investigate one possible numerical algorithm to implement the EDEM. This algorithm is used to solve modified Helmholtz BVPs on annular-like domains. Two examples of annular-like domains are studied. The results and performance are compared with those of the well-known boundary element method (BEM). The high accuracy of the EDEM solutions and the superior efficiency of the EDEM over the BEM, make EDEM an excellent alternate candidate to use in the animation industry, where speed is a predominant requirement, and by the scientific community where accuracy is the paramount objective.  相似文献   

2.
3.
In this paper, we investigate the pseudospectral method on quadrilaterals. Some results on Legendre-Gauss-type interpolation are established, which play important roles in the pseudospectral method for partial differential equations defined on quadrilaterals. As examples of applications, we propose pseudospectral methods for two model problems and prove their spectral accuracy in space. Numerical results demonstrate the efficiency of the suggested algorithms. The approximation results and techniques developed in this paper are also applicable to other problems defined on quadrilaterals.  相似文献   

4.
The numerical solution of acoustic wave propagation problems in planar domains with corners and cracks is considered. Since the exact solution of such problems is singular in the neighborhood of the geometric singularities the standard meshfree methods, based on global interpolation by analytic functions, show low accuracy. In order to circumvent this issue, a meshfree modification of the method of fundamental solutions is developed, where the approximation basis is enriched by an extra span of corner adapted non-smooth shape functions. The high accuracy of the new method is illustrated by solving several boundary value problems for the Helmholtz equation, modelling physical phenomena from the fields of room acoustics and acoustic resonance.  相似文献   

5.
Processes that can be modelled with numerical calculations of acoustic pressure fields include medical and industrial ultrasound, echo sounding, and environmental noise. We present two methods for making these calculations based on Helmholtz equation. The first method is based directly on the complex-valued Helmholtz equation and an algebraic multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped Helmholtz operator as a preconditioner. The second approach returns to a transient wave equation, and finds the time-periodic solution using a controllability technique. We concentrate on acoustic problems, but our methods can be used for other types of Helmholtz problems as well. Numerical experiments show that the control method takes more CPU time, whereas the shifted-Laplacian method has larger memory requirement.  相似文献   

6.
Summary In this paper we apply the coupling of boundary integral and finite element methods to solve a nonlinear exterior Dirichlet problem in the plane. Specifically, the boundary value problem consists of a nonlinear second order elliptic equation in divergence form in a bounded inner region, and the Laplace equation in the corresponding unbounded exterior region, in addition to appropriate boundary and transmission conditions. The main feature of the coupling method utilized here consists in the reduction of the nonlinear exterior boundary value problem to an equivalent monotone operator equation. We provide sufficient conditions for the coefficients of the nonlinear elliptic equation from which existence, uniqueness and approximation results are established. Then, we consider the case where the corresponding operator is strongly monotone and Lipschitz-continuous, and derive asymptotic error estimates for a boundary-finite element solution. We prove the unique solvability of the discrete operator equations, and based on a Strang type abstract error estimate, we show the strong convergence of the approximated solutions. Moreover, under additional regularity assumptions on the solution of the continous operator equation, the asymptotic rate of convergenceO (h) is obtained.The first author's research was partly supported by the U.S. Army Research Office through the Mathematical Science Institute of Cornell University, by the Universidad de Concepción through the Facultad de Ciencias, Dirección de Investigación and Vicerretoria, and by FONDECYT-Chile through Project 91-386.  相似文献   

7.
Summary In this paper, we present a scheme of convergence analysis of trial free boundary methods for the two-dimensional filtration (or dam) problem. For the purpose we present a new variational principle of the filtration problem. This variational principle is defined on the set of admissible domains (candidates of the solution) in the dam. Under mild assumptions on the configuration of the dam, we may assume that all admissible domains are mapped from the unit disk by conformal mappings. Thus, proving convergence of trial free boundaries is reduced to proving convergence of the conformal mappings on the unit disk, and it is done using a method in the theory of minimal surfaces. Numerical examples are given.  相似文献   

8.
We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improvements in efficiency due to the higher order spectral elements. For a given accuracy, the controllability technique with spectral element method requires fewer computational operations than with conventional finite element method. In addition, by using higher order polynomial basis the influence of the pollution effect is reduced.  相似文献   

9.
Summary. A Laguerre-Galerkin method is proposed and analyzed for the Burgers equation and Benjamin-Bona-Mahony (BBM) equation on a semi-infinite interval. By reformulating these equations with suitable functional transforms, it is shown that the Laguerre-Galerkin approximations are convergent on a semi-infinite interval with spectral accuracy. An efficient and accurate algorithm based on the Laguerre-Galerkin approximations to the transformed equations is developed and implemented. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. Received October 6, 1997 / Revised version received July 22, 1999 / Published online June 21, 2000  相似文献   

10.
A new approximation technique based on L 1-minimization is introduced. It is proven that the approximate solution converges to the viscosity solution in the case of one-dimensional stationary Hamilton–Jacobi equation with convex Hamiltonian. This material is based upon work supported by the National Science Foundation grant DMS-0510650. J.-L. Guermond is on leave from LIMSI, UPRR 3251 CNRS, BP 133, 91403 Orsay Cedex, France.  相似文献   

11.
Although adaptive finite element methods for solving elliptic problems often work well in practice, they are usually not proven to converge. For Poisson like problems, an exception is given by the method of Dörfler ([8]), that was later improved by Morin, Nochetto and Siebert ([11]). In this paper we extend these methods by constructing an adaptive finite element method for a singularly perturbed reaction-diffusion equation that, in energy norm, converges uniformly in the size of the reaction term. Moreover, in this algorithm the arising Galerkin systems are solved only inexactly, so that, generally, the number of arithmetic operations is equivalent to the number of triangles in the final partition.This work was supported by the Netherlands Organization for Scientific Research and by the EU-IHP project “Breaking Complexity.”  相似文献   

12.
In this paper, we define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary. Numerical experiments confirm the theoretical results and show the potential of our proposed method.  相似文献   

13.
For many equations arising in practice, the solutions are critical points of functionals. In previous papers we have shown that there are pairs of subsets, called sandwich pairs, that can produce critical points even though they do not separate the functional. All that is required is that the functional be bounded from above on one of the sets and bounded from below on the other, with no relationship needed between the bounds. This provides a distinct advantage in applications. The present paper discusses the situation in which one cannot find sandwich pairs for which the functional is bounded below on one set and bounded above on the other. We develop a method which can deal with such situations and apply it to problems in partial differential equations.  相似文献   

14.
In this paper, we discuss with guaranteed a priori and a posteriori error estimates of finite element approximations for not necessarily coercive linear second order Dirichlet problems. Here, ‘guaranteed’ means we can get the error bounds in which all constants included are explicitly given or represented as a numerically computable form. Using the invertibility condition of concerning elliptic operator, guaranteed a priori and a posteriori error estimates are formulated. This kind of estimates plays essential and important roles in the numerical verification of solutions for nonlinear elliptic problems. Several numerical examples that confirm the actual effectiveness of the method are presented.  相似文献   

15.
In this work we derive the structural properties of the Collocation coefficient matrix associated with the Dirichlet–Neumann map for Laplace’s equation on a square domain. The analysis is independent of the choice of basis functions and includes the case involving the same type of boundary conditions on all sides, as well as the case where different boundary conditions are used on each side of the square domain. Taking advantage of said properties, we present efficient implementations of direct factorization and iterative methods, including classical SOR-type and Krylov subspace (Bi-CGSTAB and GMRES) methods appropriately preconditioned, for both Sine and Chebyshev basis functions. Numerical experimentation, to verify our results, is also included.  相似文献   

16.
A new approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs was introduced in Fokas [A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A 53 (1997) 1411–1443]. For linear elliptic PDEs, an important aspect of this approach is the characterization of a generalized Dirichlet to Neumann map: given the derivative of the solution along a direction of an arbitrary angle to the boundary, the derivative of the solution perpendicularly to this direction is computed without solving on the interior of the domain. This is based on the analysis of the so-called global relation, an equation which couples known and unknown components of the derivative on the boundary and which is valid for all values of a complex parameter k. A collocation-type numerical method for solving the global relation for the Laplace equation in an arbitrary bounded convex polygon was introduced in Fulton et al. [An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465–483]. Here, by choosing a different set of the “collocation points” (values for k), we present a significant improvement of the results in Fulton et al. [An analytical method for linear elliptic PDEs and its numerical implementation, J. Comput. Appl. Math. 167 (2004) 465–483]. The new collocation points lead to well-conditioned collocation methods. Their combination with sine basis functions leads to a collocation matrix whose diagonal blocks are point diagonal matrices yielding efficient implementation of iterative methods; numerical experimentation suggests quadratic convergence. The choice of Chebyshev basis functions leads to higher order convergence, which for regular polygons appear to be exponential.  相似文献   

17.
In this paper we show the existence of weak solutions for a nonlinear elliptic equation with arbitrary growth of the non linearity and data measure. A numerical algorithm to compute a numerical approximation of the weak solution is described and analyzed. In a first step a super-solution is computed using a domain decomposition method. Numerical examples are presented and commented. This work was supported by the French Grant “Action Intégrée MA/02/33”.  相似文献   

18.
In this paper, we present an enhanced version of the minimax algorithm of Chen, Ni, and Zhou that offers the additional guarantee that the solution found is a fix-point of a projector on a cone. Positivity, negativity, and monotonicity can be expressed in this way. The convergence of the algorithm is proved by means of a “computational deformation lemma” instead of the usual deformation lemma used in the calculus of variations.  相似文献   

19.
In this paper, an iterative boundary element method based on our relaxed algorithm introduced in [8] is used to solve numerically a class of inverse boundary problems. A dynamical choice of the relaxation parameter is presented and a stopping criterion based on our theoretical results is used. The numerical results show that the algorithm produces a reasonably approximate solution and improves the rate of convergence of Kozlov's scheme [10]. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号