首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the inverse scattering problem of determining both the shape and some of the physical properties of the scattering object from a knowledge of the (measured) electric and magnetic fields due to the scattering of an incident time-harmonic electromagnetic wave at fixed frequency. We shall discuss the linear sampling method for solving the inverse scattering problem which does not require any a priori knowledge of the geometry and the physical properties of the scatterer. Included in our discussion is the case of partially coated objects and inhomogeneous background. We give references for numerical examples for each problem discussed in this paper.  相似文献   

2.
We consider the interior inverse scattering problem of recovering the shape and the surface impedance of an impenetrable partially coated cavity from a knowledge of measured scatter waves due to point sources located on a closed curve inside the cavity. First, we prove uniqueness of the inverse problem, namely, we show that both the shape of the cavity and the impedance function on the coated part are uniquely determined from exact data. Then, based on the linear sampling method, we propose an inversion scheme for determining both the shape and the boundary impedance. Finally, we present some numerical examples showing the validity of our method.  相似文献   

3.
Consider the problem of scattering of electromagnetic waves by a doubly periodic Lipschitz structure. The medium above the structure is assumed to be homogenous and lossless with a positive dielectric coefficient. Below the structure there is a perfect conductor with a partially coated dielectric boundary. We first establish the well‐posedness of the direct problem in a proper function space and then obtain a uniqueness result for the inverse problem by extending Isakov's method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we consider the inverse scattering problem for a cavity that is bounded by a partially coated penetrable inhomogeneous medium of compact support and recover the shape of the cavity and the surface conductivity from a knowledge of measured scattered waves due to point sources located on a curve or surface inside the cavity. First, we prove that both the shape of the cavity and the surface conductivity on the coated part can be uniquely determined from a knowledge of the measured data. Next, we establish a linear sampling method for determining both the shape of the cavity and the surface conductivity. A central role in our justification is played by an eigenvalue problem which we call the exterior transmission eigenvalue problem. Finally, we present some numerical examples to illustrate the validity of our method.  相似文献   

5.
We consider the inverse boundary value problem for Maxwell's equations that takes into account the chirality of a body in . More precisely, we show that knowledge of a boundary map for the electromagnetic fields determines the electromagnetic parameters, namely the conductivity, electric permittivity, magnetic permeability and chirality, in the interior. We rewrite Maxwell's equations as a first order perturbation of the Laplacian and construct exponentially growing solutions, and obtain the result in the spirit of complex geometrical optics.  相似文献   

6.
Given the m lowest eigenvalues, we seek to recover an approximation to the density function ρ in the weighted Helmholtz equation -Δ=λρu on a rectangle with Dirchlet boundary conditions. The density ρ is assumed to be symmetric with respect to the midlines of the rectangle. Projection of the boundary value problem and the unknown density function onto appropriate vector spaces leads to a matrix inverse problem. Solutions of the matrix inverse problem exist provided that the reciprocals of the prescribed eigenvalues are close to the reciprocals of the simple eigenvalues of the base problem with ρ = 1. The matrix inverse problem is solved by a fixed—point iterative method and a density function ρ* is constructed which has the same m lowest eigenvalues as the unknown ρ. The algorithm can be modified when multiple base eigenvalues arise, although the success of the modification depends on the symmetry properties of the base eigenfunctions.  相似文献   

7.
Jun Guo 《Applicable analysis》2018,97(9):1549-1564
We consider the direct and inverse problems for the scattering of a partially penetrable obstacle. Here ‘partially penetrable obstacle’ means that the waves transmit into the obstacle just from partial boundary of the obstacle with the rest of the boundary touching a known perfect and thin scatterer. The solvability of the direct scattering problem is presented using the classical boundary integral equation method. An interesting interior transmission problem is investigated for the purpose of solving the inverse obstacle scattering problem. Then the linear sampling method is proposed to reconstruct the shape and location of the obstacle from near field measurements. We note that the inversion algorithm can be implemented by avoiding the use of background Green function as a test function due to a mixed reciprocal principle.  相似文献   

8.
We use the singular sources method to detect the shape of the obstacle in a mixed boundary value problem. The basic idea of the method is based on the singular behavior of the scattered field of the incident point-sources on the boundary of the obstacle. Moreover we take advantage of the scattered field estimate by the backprojection operator. Also we give a uniqueness proof for the shape reconstruction.  相似文献   

9.
In this work, we consider the method of non-linear boundary integral equation for solving numerically the inverse scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder in three dimensions. We consider the indirect method and simple representations for the electric and the magnetic fields in order to derive a system of five integral equations, four on the boundary of the cylinder and one on the unit circle where we measure the far-field pattern of the scattered wave. We solve the system iteratively by linearizing only the far-field equation. Numerical results illustrate the feasibility of the proposed scheme.  相似文献   

10.
We derive and analyze two equivalent integral formulations for the time-harmonic electromagnetic scattering by a dielectric object. One is a volume integral equation (VIE) with a strongly singular kernel and the other one is a coupled surface-volume system of integral equations with weakly singular kernels. The analysis of the coupled system is based on standard Fredholm integral equations, and it is used to derive properties of the volume integral equation.  相似文献   

11.
In this paper, we consider the inverse problem of recovering a doubly periodic Lipschitz structure through the measurement of the scattered field above the structure produced by point sources lying above the structure. The medium above the structure is assumed to be homogeneous and lossless with a positive dielectric coefficient. Below the structure is a perfect conductor partially coated with a dielectric. A periodic version of the linear sampling method is developed to reconstruct the doubly periodic structure using the near field data. In this case, the far field equation defined on the unit ball of ?3 is replaced by the near field equation which is a linear integral equation of the first kind defined on a plane above the periodic surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the authors study the forward and inverse problems for a fractional boundary value problem with Dirichlet boundary conditions. The existence and uniqueness of solutions for the forward problem is first proved. Then an inverse source problem is considered.  相似文献   

13.
This paper introduces a new approach to characterize the shape ω of a scattering medium (either an acoustically soft obstacle or an inhomogeneous medium) by the far field data. In contrast to the Linear Sampling Method normality of the far field operator is not needed. Therefore, also scattering by limited far field data and absorbing media can be treated. While in the Linear Sampling Method the points in the interior of ω are characterized by the solution of an integral equation of the first kind, for our new method a constrained optimization problem has to be solved. Although this new approach is more time consuming some numerical experiments at the end of this paper show the practicability of the method.  相似文献   

14.
Having in mind applications to the fault-detection/diagnosis of lossless electrical networks, here we consider some inverse scattering problems for Schrödinger operators over star-shaped graphs. We restrict ourselves to the case of minimal experimental setup consisting in measuring, at most, two reflection coefficients when an infinite homogeneous (potential-less) branch is added to the central node. First, by studying the asymptotic behavior of only one reflection coefficient in the high-frequency limit, we prove the identifiability of the geometry of this star-shaped graph: the number of edges and their lengths. Next, we study the potential identification problem by inverse scattering, noting that the potentials represent the inhomogeneities due to the soft faults in the network wirings (potentials with bounded H1-norms). The main result states that, under some assumptions on the geometry of the graph, the measurement of two reflection coefficients, associated to two different sets of boundary conditions at the external vertices of the tree, determines uniquely the potentials; it can be seen as a generalization of the theorem of the two boundary spectra on an interval.  相似文献   

15.
We consider the scattering of an electromagnetic time‐harmonic plane wave by an infinite cylinder having a mixed open crack (or arc) in R2 as the cross section. The crack is made up of two parts, and one of the two parts is (possibly) coated by a material with surface impedance λ. We transform the scattering problem into a system of boundary integral equations by adopting a potential approach, and establish the existence and uniqueness of a weak solution to the system by the Fredholm theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A penalty function method for solving inverse optimal value problem   总被引:2,自引:0,他引:2  
In order to consider the inverse optimal value problem under more general conditions, we transform the inverse optimal value problem into a corresponding nonlinear bilevel programming problem equivalently. Using the Kuhn–Tucker optimality condition of the lower level problem, we transform the nonlinear bilevel programming into a normal nonlinear programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty. Then we give via an exact penalty method an existence theorem of solutions and propose an algorithm for the inverse optimal value problem, also analysis the convergence of the proposed algorithm. The numerical result shows that the algorithm can solve a wider class of inverse optimal value problem.  相似文献   

17.
Recently A. G. Ramm (1999) has shown that a subset of phase shifts , , determines the potential if the indices of the known shifts satisfy the Müntz condition . We prove the necessity of this condition in some classes of potentials. The problem is reduced to an inverse eigenvalue problem for the half-line Schrödinger operators.

  相似文献   


18.
We consider the inverse scattering problem of determining the shape of a partially coated obstacle D. To this end, we solve a scattering problem for the Helmholtz equation where the scattered field satisfies mixed Dirichlet–Neumann-impedance boundary conditions on the Lipschitz boundary of the scatterer D. Based on the analysis of the boundary integral system to the direct scattering problem, we propose how to reconstruct the shape of the obstacle D by using the linear sampling method.  相似文献   

19.
The inverse problem of constructing dynamical systems X with a prescribed compact attracting set KRn and non-trivial dynamics on it is solved. The boundaries ∂ of the attracting basins corresponding to different connected components of K and the relationship between the symmetries of K, X and ∂ are also studied.  相似文献   

20.
Let p be a graph parameter that assigns a positive integer value to every graph. The inverse problem for p asks for a graph within a prescribed class (here, we will only be concerned with trees), given the value of p. In this context, it is of interest to know whether such a graph can be found for all or at least almost all integer values of p. We will provide a very general setting for this type of problem over the set of all trees, describe some simple examples and finally consider the interesting parameter “number of subtrees”, where the problem can be reduced to some number-theoretic considerations. Specifically, we will prove that every positive integer, with only 34 exceptions, is the number of subtrees of some tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号