首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Taking Ni as an example, the structural stability and theoretical strength of FCC crystals under uniaxial loading were investigated by combining the modified analytical embedded atom method (MAEAM) with modified Born stability criteria. The results revealed that, under sufficient compression, there existed a stress-free instable BCC phase and then a stress-free metastable BCT phase corresponding to local maximum and minimum internal energy, respectively. The stable region ranged for the theoretical strength from −5.143 eV/nm3 with a corresponding strain of −9.94% under compression to 10.396 eV/nm3 with a corresponding strain of 9.66% under tension.  相似文献   

2.
In this paper, we proposed a dual-enhanced core photonic crystal fiber (PCF) with high birefringence and ultra-high negative dispersion for dispersion compensation in a polarization maintained optical system. Using finite difference time domain (FDTD) method, we presented dispersion compensating PCF (DC-PCF) with negative dispersion between −1650 ps nm−1 km−1 and −2305 ps nm−1 km−1 in C-band and particularly −2108 ps nm−1 km−1 in λ = 1.55 μm wavelength. By this method, we can compensate dispersion in 124 km long span of a conventional single mode fiber (SMF) by 1 km-long of the DC-PCF at λ = 1.55 μm wavelength. Moreover, fundamental mode of the proposed PCF can induce birefringence about 3.5 × 10−3 at 1.55 μm wavelength.  相似文献   

3.
Inelastic X-ray scattering experiments on sub- and supercritical water were performed to investigate collective dynamics of this unique solvent. Analysis within a generalized Langevin formalism shows that the positive dispersion of the sound velocity, as compared to the hydrodynamic value, first decreases (1.0<ρ<0.8 g cm−3) at all measured momentum transfers (1.3-10.7 nm−1), and then increases (0.7<ρ<0.26 g cm−3) again only at higher momentum transfers. We suggest the initial decrease is due to approaching the percolation limit in the number of hydrogen bonds, and the subsequent increase is due to the formation of rigid dimers in sub- and supercritical water.  相似文献   

4.
We have studied the growth mode and morphology of Ni clusters on a TiO2(1 1 0) surface with a wide terrace using scanning tunneling microscopy (STM) at a low coverage (less than 3 atoms nm−2). The Ni clusters are formed on the terrace at the low coverage of 0.2 atoms nm−2. Their average dimensions are constant in three directions up to 1 atoms nm−2. The Ni clusters have an oval shape with average sizes of 1.8 nm (along [0 0 1]) × 1.4 nm (along (in the [1 1 0] directions). Above the coverage of 1.0 atoms nm−2, an increase in the cluster height occurs, retaining an almost constant lateral size. It is proposed that the interaction of the Ni cluster and the support surface regulates the Ni cluster size.  相似文献   

5.
Using a picosecond pump and probe time-resolved technique we evidence a single pump pulse photo-induced magnetic ordering in a Mn-doped semiconductor magneto-photonic microcavity operating in the strong coupling regime at room temperature. This nanosecond duration magnetization is attributed to a magnetic ordering of the Mn-impurities mediated through photo-generated holes and enhanced through the confinement. It is distinct from the preceding short lived photo-induced spin orientation of carriers also evidenced by our technique for circularly polarized pump beams. The photo-generated magnetic flux density amounts to a 1 kG for beam fluences of few tens μJ cm−2 and effective Mn concentrations of 5 nm−3; large photo-induced magneto-optic Kerr rotations are also evidenced.  相似文献   

6.
In this paper, we present a photonic crystal fiber based on hexagonal structure for improved negative dispersion as well as high birefringence in the telecom wavelength bands. It is demonstrated that it is possible to obtain negative dispersion coefficient of −712 ps/(nm km) and relative dispersion slope (RDS) perfectly match to that of single mode fiber (SMF) of about 0.0036 nm−1 at the operating wavelength 1550 nm. The proposed fiber exhibits high birefringence of the order 2.11 × 10−2 with nonlinear coefficient about 57.57 W−1 km−1 at 1550 nm. Moreover, it is confirmed that the designed fiber successfully operates as a single mode in the entire band of interest.  相似文献   

7.
We report here on changes in magnetism and microstructure when implanting, at 92 or 300 K, up to 5 × 1015 Au26+-ions cm−2 of 350 MeV into natFe(45 nm)/57Fe(20 nm)/Si trilayers. This choice of ions and energy allowed to test the irradiation effects in the regime of pure electronic stopping. The samples were analysed before and after irradiation by Rutherford back-scattering spectroscopy, X-ray diffraction, conversion electron Mössbauer spectroscopy, and magneto-optical Kerr effect. Up to 1 × 1015 ions cm−2, there was interface broadening at a mixing rate of Δσ2/Φ = 55(5) nm4, followed by full Fe-Si inter-diffusion. The Mössbauer spectra revealed fractions of α-Fe and amorphous ferromagnetic and paramagnetic iron silicides, but no crystalline Fe-Si phase. The magnetic remanence in the as-deposited Fe-layer showed small components of uniaxial and four-fold magnetization. For increasing ion fluence, the component with four-fold symmetry grew at the expense of the uniaxial component. For the highest fluences, an isotropic magnetization was found.  相似文献   

8.
Liquid As2Se3 undergoes the semiconductor-metal transition with increasing temperature when pressure is applied to avoid evaporation of the liquid. To investigate the atomic dynamics of liquid As2Se3, we have carried out inelastic x-ray scattering experiments of this system at 1073 K and 6 MPa and obtained the dynamic structure factor S(Q,E), from approximately 1.6 nm−1 to 11 nm−1, where Q and E are momentum and energy transfer, respectively. The excitation energy in the semiconducting state at 1073 K disperses as fast as the ultrasonic sound velocity at Q < 2.5 nm−1 but at Q > 2.9 nm−1 it disperses approximately 1.8 times faster. We analyzed S(Q,E) at 1073 K using a simple viscoelastic model and discussed Q dependence of the propagation of the acoustic mode.  相似文献   

9.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

10.
We report the use of a magnetic instability of the spin reorientation transition type to enhance the magnetoelectric sensitivity in magnetostrictive-piezoelectric structures. We present the theoretical study of a clamped beam resonant actuator composed of a piezoelectric element on a passive substrate actuated by a magnetostrictive nanostructured layer. The experiments were made on a polished 150 μm thick 18×3 mm2 lead zirconate titanate (PZT) plate glued to a 50 μm thick silicon plate and coated with a giant magnetostrictive nanostructured Nx(TbCo2 5nm/FeCo5nm) layer. A second set of experiments was done with magnetostrictive layer deposited on PZT plate. Finally, a film/film structure using magnetostrictive and aluminium nitride films on silicon substrate was realized, and showed ME amplitudes reaching 30 V Oe−1 cm−1. Results agree with analytical theory.  相似文献   

11.
Heat-capacity investigations on the ferrimagnetic spinel FeCr2S4 poly- and single crystals provide experimental evidence of orbital liquid and orbital glass states. The low-temperature transition in the polycrystals at 10 K arises from orbital order and is very sensitive to the sample stoichiometry. In the single crystals the orbital order is fully suppressed resulting in an orbital glass state with the heat capacity following a strict T2 dependence towards zero temperature. At elevated temperatures, FeCr2S4 exhibits an unexpected large linear term of about 100 mJ mol−1 K−2 as the fingerprint of the orbital liquid.  相似文献   

12.
The present article describes novel highly nonlinear photonic crystal fibers (HN-PCFs) with flattened chromatic dispersion and low confinement losses. The proposed design has been simulated based on the finite-difference method with anisotropic perfectly matched layers absorbing boundary condition. It is proved that the design novel HN-PCFs is obtained a nonlinear coefficient greater than 45 W−1 km−1 and low dispersion slope −0.009 ps/(nm2.km) at 1.55 μm wavelength. In addition, results from numerical simulation show that the ultra-flattened dispersion of 0 ± 0.65 ps/(nm.km) can be obtained in a 1.36-1.62 μm wavelength range with confinement losses lower than 10−7 dB/m in the same wavelength range. Another advantage of the proposed HN-PCFs is that it possessed modest number of design parameters.  相似文献   

13.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

14.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

15.
This study investigates the nonlinear optical properties of azo-dye-doped nematic and polymer-dispersed liquid crystal (ADDPDLC) films with nano-sized LC droplets using the Z-scan technique, which is a simple but powerful technique for measuring the optical Kerr constants of materials. The results indicate that the optical Kerr constant (n2) of the azo-dye-doped nematic LC (ADDLC) film is large because of the photoisomerization effect and the thermal effect. Therefore, the optical Kerr constant of this material can be modulated by varying the temperature of the sample and the direction of polarization of incident laser. The range of n2 modulated is from −5.26 × 10−3 to 1.62 × 10−3 cm2/W. The optical Kerr constants of ADDPDLC films at various temperatures are also measured. The experimental results reveal that liquid crystals in the ADDPDLC film strengthen the nonlinearity. The n2 of the ADDPDLC film is maximal at ∼35 °C, because of the decrease in the clearing temperature of the ADDPDLC films. The clearing temperatures of the liquid crystals (E7), and the ADDPDLC film used in this work were found to be 61 °C and 43 °C, respectively.  相似文献   

16.
Liang Sun  Feng-yun Guo  Li-li Liu  Wei Cai  Yu-heng Xu 《Optik》2009,120(11):514-518
OH-absorption properties of the optical damage region in a series of codoped In/Mg:LiNbO3 crystals with various Li/Nb ratios have been investigated. The OH-associated vibrational peak at 3507 cm−1 is confirmed to occur in crystals with Li/Nb ratio of 0.94. For codoped In/Mg:LiNbO3 crystals with Li/Nb ratio of 1.05 and 1.20, the OH-associated vibrational peaks are detected at 3536 and 3507 cm−1 as well. A new peak at 3518 cm−1 attributed to a (InNb)2−-OH-(MgNb)3− defect center is revealed in crystals with Li/Nb ratio 1.38. When the “In-Mg threshold” concentration is reached, the optical damage resistance ability of codoped In/Mg:LiNbO3 crystals is greatly improved.  相似文献   

17.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

18.
An influence of electronic states at an insulator/GaN interface on the behavior of excess holes in an ultraviolet-illuminated metal/ SiO2/n-GaN structure has been studied by numerical simulations for weak (gate bias of −0.1 V ) and strong (−1 V ) depletion, in a wide range of excitation light intensities (from 1010 to 1020 photons cm−2 s−1) and for various bulk carrier lifetimes (from 1 to 100 ns). It has been found that the interface states with densities of 1012 eV −1 cm−2 dramatically reduce the total (integrated in the whole GaN layer) density of photogenerated holes and thus degrade the sensitivity of the metal/insulator/GaN-based photodetector.  相似文献   

19.
The absolute Raman cross section σRS of the first-order 519 cm−1 optical phonon in silicon was measured using a small temperature-controlled blackbody for the signal calibration of the Raman system. Measurements were made with a 25-mil thick (001) silicon sample located in the focal plane of a 20-mm effective focal length (EFL) lens using 785-, 1064-, and 1535-nm CW pump lasers for the excitation of Raman scattering. The pump beam was polarized along the [100] axis of the silicon sample. Values of 1.0±0.2×10−27, 3.6±0.7×10−28, and 1.1±0.2×10−29 cm2 were determined for for 785-, 1064-, and 1535-nm excitation, respectively. The corresponding values of the Raman scattering efficiency S are 4.0±0.8×10−6, 1.4±0.3×10−6, and 4.4±0.8×10−8 cm−1 sr−1.The values of the Raman polarizability |d| for 785-, 1064-, and 1535-nm excitation are 4.4±0.4×10−15, 5.1±0.5×10−15, and 1.9±0.2×10−15 cm2, respectively. The values of 4.4±0.4×10−15 and 5.1±0.5×10−15 cm2 for |d| for 785- and 1064-nm excitation, respectively, are 1.3 and 2.0 times larger than the values of 3.5×10−15 and 2.5×10−15 cm2 calculated by Wendel. The Raman polarizability |d| computed using the density functional theory in the long-wavelength limit is consistent with the general trend of the measured data and Wendel’s model.  相似文献   

20.
We have studied the formation of nanostructures on Si(100) surfaces after 1.5 MeV Sb implantation. Scanning Probe Microscopy has been utilized to investigate the ion implanted surfaces. We observe the formation of nanostructures after a fluence of 1×1013 ions/cm2. These surface structures are elliptical in shape with an eccentricity of 0.86 and their major and minor axes having dimensions of about 11.6 nm and 23.0 nm, respectively. The area of the nanostructure is 210 nm2at this fluence. Although the nanostructures remain of elliptical shape, their area increase with increasing fluence. However, after a fluence of 5×1014 ions/cm2 a transition in shape of nanostructures is observed. Nanostructures become approximately circular with an eccentricity of 0.19 and a diameter of about 30.1 nm. At this fluence we also observe a large increase in the area of the nanostructures to 726 nm2. Surface morphology and surface roughness of the ion implanted surfaces has also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号