首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the construction of orthogonal bases in the space of Laurent polynomials on the unit circle is considered. As an application, a connection with the so-called bi-orthogonal systems of trigonometric polynomials is established and quadrature formulas on the unit circle based on Laurent polynomials are studied.  相似文献   

2.
Two integrals of Ramanujan are used to define a q-analogue of the Euler beta integral on the real line and of the Cauchy beta-integral on the complex unit circle. Such integrals are connected to orthogonal, biorthogonal and Laurent polynomials. Explicit examples of Laurent orthogonal polynomials are given on the real line and on the circle.  相似文献   

3.
The paper deals with the rate of convergence for the Laurent polynomials of Hermite-Fejér interpolation on the unit circle with nodal system the n roots of a complex number with modulus one. The order of convergence and the asymptotic constants are obtained when we consider analytic functions on open disks and open annulus containing the unit circle.  相似文献   

4.
A recently introduced fast algorithm for the computation of the first N terms in an expansion of an analytic function into ultraspherical polynomials consists of three steps: Firstly, each expansion coefficient is represented as a linear combination of derivatives; secondly, it is represented, using the Cauchy integral formula, as a contour integral of the function multiplied by a kernel; finally, the integrand is transformed to accelerate the convergence of the Taylor expansion of the kernel, allowing for rapid computation using Fast Fourier Transform. In the current paper we demonstrate that the first two steps remain valid in the general setting of orthogonal polynomials on the real line with finite support, orthogonal polynomials on the unit circle and Laurent orthogonal polynomials on the unit circle.  相似文献   

5.
Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegő quadrature formulas are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of Cauchy or Riesz–Herglotz transforms of a (positive or general complex) measure. We consider the construction and properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of convergence.  相似文献   

6.
We provide a detailed treatment of Weyl–Titchmarsh theory for half-lattice and full-lattice CMV operators and discuss their systems of orthonormal Laurent polynomials on the unit circle, spectral functions, variants of Weyl–Titchmarsh functions, and Green's functions. In particular, we discuss the corresponding spectral representations of half-lattice and full-lattice CMV operators.  相似文献   

7.
Quasidefinite sesquilinear forms for Laurent polynomials in the complex plane and corresponding CMV biorthogonal Laurent polynomial families are studied. Bivariate linear functionals encompass large families of orthogonalities such as Sobolev and discrete Sobolev types. Two possible Christoffel transformations of these linear functionals are discussed. Either the linear functionals are multiplied by a Laurent polynomial, or are multiplied by the complex conjugate of a Laurent polynomial. For the Geronimus transformation, the linear functional is perturbed in two possible manners as well, by a division by a Laurent polynomial or by a complex conjugate of a Laurent polynomial, in both cases the addition of appropriate masses (linear functionals supported on the zeros of the perturbing Laurent polynomial) is considered. The connection formulas for the CMV biorthogonal Laurent polynomials, its norms, and Christoffel–Darboux kernels, in all the four cases, are given. For the Geronimus transformation, the connection formulas for the second kind functions and mixed Christoffel–Darboux kernels are also given in the two possible cases. For prepared Laurent polynomials, i.e., of the form , , these connection formulas lead to quasideterminantal (quotient of determinants) Christoffel formulas for all the four transformations, expressing an arbitrary degree perturbed biorthogonal Laurent polynomial in terms of 2n unperturbed biorthogonal Laurent polynomials, their second kind functions or Christoffel–Darboux kernels and its mixed versions. Different curves are presented as examples, such as the real line, the circle, the Cassini oval, and the cardioid. The unit circle case, given its exceptional properties, is discussed in more detail. In this case, a particularly relevant role is played by the reciprocal polynomial, and the Christoffel formulas provide now with two possible ways of expressing the same perturbed quantities in terms of the original ones, one using only the nonperturbed biorthogonal family of Laurent polynomials, and the other using the Christoffel–Darboux kernels and its mixed versions, as well. Two examples are discussed in detail.  相似文献   

8.
We present a method for computing the Hermite interpolation polynomial based on equally spaced nodes on the unit circle with an arbitrary number of derivatives in the case of algebraic and Laurent polynomials. It is an adaptation of the method of the Fast Fourier Transform (FFT) for this type of problems with the following characteristics: easy computation, small number of operations and easy implementation.In the second part of the paper we adapt the algorithm for computing the Hermite interpolation polynomial based on the nodes of the Tchebycheff polynomials and we also study Hermite trigonometric interpolation problems.  相似文献   

9.
Matrix orthogonal Laurent polynomials in the unit circle and the theory of Toda-like integrable systems are connected using the Gauss–Borel factorization of two, left and a right, Cantero–Morales–Velázquez block moment matrices, which are constructed using a quasi-definite matrix measure. A block Gauss–Borel factorization problem of these moment matrices leads to two sets of biorthogonal matrix orthogonal Laurent polynomials and matrix Szeg? polynomials, which can be expressed in terms of Schur complements of bordered truncations of the block moment matrix. The corresponding block extension of the Christoffel–Darboux theory is derived. Deformations of the quasi-definite matrix measure leading to integrable systems of Toda type are studied. The integrable theory is given in this matrix scenario; wave and adjoint wave functions, Lax and Zakharov–Shabat equations, bilinear equations and discrete flows — connected with Darboux transformations. We generalize the integrable flows of the Cafasso's matrix extension of the Toeplitz lattice for the Verblunsky coefficients of Szeg? polynomials. An analysis of the Miwa shifts allows for the finding of interesting connections between Christoffel–Darboux kernels and Miwa shifts of the matrix orthogonal Laurent polynomials.  相似文献   

10.
We obtain the Laurent polynomial of Hermite interpolation on the unit circle for nodal systems more general than those formed by the n-roots of complex numbers with modulus one. Under suitable assumptions for the nodal system, that is, when it is constituted by the zeros of para-orthogonal polynomials with respect to appropriate measures or when it satisfies certain properties, we prove the convergence of the polynomial of Hermite-Fejér interpolation for continuous functions. Moreover, we also study the general Hermite interpolation problem on the unit circle and we obtain a sufficient condition on the interpolation conditions for the derivatives, in order to have uniform convergence for continuous functions.Finally, we obtain some improvements on the Hermite interpolation problems on the interval and for the Hermite trigonometric interpolation.  相似文献   

11.
This paper is devoted to the study of direct and inverse (Laurent) polynomial modifications of moment functionals on the unit circle, i.e., associated with hermitian Toeplitz matrices. We present a new approach which allows us to study polynomial modifications of arbitrary degree.The main objective is the characterization of the quasi-definiteness of the functionals involved in the problem in terms of a difference equation relating the corresponding Schur parameters. The results are presented in the general framework of (non-necessarily quasi-definite) hermitian functionals, so that the maximum number of orthogonal polynomials is characterized by the number of consistent steps of an algorithm based on the referred recurrence for the Schur parameters.The non-uniqueness of the inverse problem makes it more interesting than the direct one. Due to this reason, special attention is paid to the inverse modification, showing that different approaches are possible depending on the data about the polynomial modification at hand. These different approaches are translated as different kinds of initial conditions for the related inverse algorithm.Some concrete applications to the study of orthogonal polynomials on the unit circle show the effectiveness of this new approach: an exhaustive and instructive analysis of the functionals coming from a general inverse polynomial perturbation of degree one for the Lebesgue measure; the classification of those pairs of orthogonal polynomials connected by a certain type of linear relation with constant polynomial coefficients; and the determination of those orthogonal polynomials whose associated ones are related to a degree one polynomial modification of the original orthogonality functional.  相似文献   

12.
We characterize the sequences of orthogonal polynomials on the unit circle whose derivatives are also orthogonal polynomials on the unit circle. Some relations for the sequences of derivatives of orthogonal polynomials are provided. Finally, we pose some problems about orthogonality-preserving maps and differential equations for orthogonal polynomials on the unit circle.  相似文献   

13.
Spectral factorization of Laurent polynomials   总被引:2,自引:0,他引:2  
We analyse the performance of five numerical methods for factoring a Laurent polynomial, which is positive on the unit circle, as the modulus squared of a real algebraic polynomial. It is found that there is a wide disparity between the methods, and all but one of the methods are significantly influenced by the variation in magnitude of the coefficients of the Laurent polynomial, by the closeness of the zeros of this polynomial to the unit circle, and by the spacing of these zeros. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Rakhmanov's theorem for orthogonal polynomials on the unit circle gives a sufficient condition on the orthogonality measure for orthogonal polynomials on the unit circle, in order that the reflection coefficients (the recurrence coefficients in the Szegő recurrence relation) converge to zero. In this paper we give the analog for orthogonal matrix polynomials on the unit circle.  相似文献   

15.
Littlewood polynomials are polynomials with each of their coefficients in \(\{-1,1\}\). A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin–Shapiro polynomials. It is shown in this paper that the Mahler measure and the maximum modulus of the Rudin–Shapiro polynomials on the unit circle of the complex plane have the same size. It is also shown that the Mahler measure and the maximum norm of the Rudin–Shapiro polynomials have the same size even on not too small subarcs of the unit circle of the complex plane. Not even nontrivial lower bounds for the Mahler measure of the Rudin–Shapiro polynomials have been known before.  相似文献   

16.
The object under consideration is the system of orthonormal polynomials of the second kind which corresponds to ultraspherical weight function on the unit circle. We obtain a uniform asymptotic representation for such polynomials in the closed unit disk as well as two-sided bounds on the unit circle. October 24, 1996. Date revised: April 10, 1997.  相似文献   

17.
We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle.  相似文献   

18.
We introduce a new map from polynomials orthogonal on the unit circle to polynomials orthogonal on the real axis. This map is closely related to the theory of CMV matrices. It contains an arbitrary parameter ?? which leads to a linear operator pencil. We show that the little and big ?1?Jacobi polynomials are naturally obtained under this map from the Jacobi polynomials on the unit circle.  相似文献   

19.
Summary. This paper explores the relationship between certain inverse unitary eigenvalue problems and orthogonal functions. In particular, the inverse eigenvalue problems for unitary Hessenberg matrices and for Schur parameter pencils are considered. The Szeg? recursion is known to be identical to the Arnoldi process and can be seen as an algorithm for solving an inverse unitary Hessenberg eigenvalue problem. Reformulation of this inverse unitary Hessenberg eigenvalue problem yields an inverse eigenvalue problem for Schur parameter pencils. It is shown that solving this inverse eigenvalue problem is equivalent to computing Laurent polynomials orthogonal on the unit circle. Efficient and reliable algorithms for solving the inverse unitary eigenvalue problems are given which require only O() arithmetic operations as compared with O() operations needed for algorithms that ignore the structure of the problem. Received April 3, 1995 / Revised version received August 29, 1996  相似文献   

20.
Para‐orthogonal polynomials derived from orthogonal polynomials on the unit circle are known to have all their zeros on the unit circle. In this note we study the zeros of a family of hypergeometric para‐orthogonal polynomials. As tools to study these polynomials, we obtain new results which can be considered as extensions of certain classical results associated with three term recurrence relations and differential equations satisfied by orthogonal polynomials on the real line. One of these results which might be considered as an extension of the classical Sturm comparison theorem, enables us to obtain monotonicity with respect to the parameters for the zeros of these para‐orthogonal polynomials. Finally, a monotonicity of the zeros of Meixner‐Pollaczek polynomials is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号