首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present two higher-order compact finite difference schemes for solving one-dimensional (1D) heat conduction equations with Dirichlet and Neumann boundary conditions, respectively. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Dirichlet or Neumann boundary condition can be applied directly without discretization, and at the same time, the fifth or sixth-order compact finite difference approximations at the grid point can be obtained. On the other hand, an eighth-order compact finite difference approximation is employed for the spatial derivative at other interior grid points. Combined with the Crank–Nicholson finite difference method and Richardson extrapolation, the overall scheme can be unconditionally stable and provides much more accurate numerical solutions. Numerical errors and convergence rates of these two schemes are tested by two examples.  相似文献   

2.
We discuss the solution of the boundary value problem in a duct with a centered septum [9]. On the lower wall of the duct a Neumann condition is applied while on the upper wall a Dirichlet condition is applied. On the septum we apply a Dirichlet condition on the lower side and a Neumann condition on the upper one. This problem is formulated as a pair of integral equations of the Wiener–Hopf type for which we supply solutions for two modes of excitation as well as real and complex wave number. A critical examination is made of the construction, which reduces the problem to one in complex analysis. For real wave number, the physical parameters are provided in very simple forms.  相似文献   

3.
Shape gradient flows are widely used in numerical shape optimization algorithms. We investigate the accuracy and effectiveness of approximate shape gradients flows for shape optimization of elliptic problems. We present convergence analysis with a priori error estimates for finite element approximations of shape gradient flows associated with a distributed or boundary expression of Eulerian derivative. Numerical examples are presented to verify theory and show that using the volume expression is effective for shape optimization with Dirichlet and Neumann boundary conditions.  相似文献   

4.
We present an explicit, symmetric finite difference scheme for the acoustic wave equation on a rectangle with Neumann and/or Dirichlet boundary conditions. The scheme is fourth order accurate both in time and space. It is obtained by mass lumping of a finite element scheme. The accuracy and the difference approximations at the boundary are analyzed in terms of local and global errors. AMS subject classification (2000) 65M10  相似文献   

5.
We prove certain mixed-norm Strichartz estimates on manifolds with boundary. Using them we are able to prove new results for the critical and subcritical wave equation in 4-dimensions with Dirichlet or Neumann boundary conditions. We obtain global existence in the subcritical case, as well as global existence for the critical equation with small data. We also can use our Strichartz estimates to prove scattering results for the critical wave equation with Dirichlet boundary conditions in 3-dimensions.  相似文献   

6.
We consider elastic scattering problems described by the Dirichlet or the Neumann boundary value problem for the elastodynamic equation in the exterior of a 2D bounded domain or in the exterior of a crack. The boundary of the domain is assumed to have a finite set of corner points where the scattered wave may have singular behaviour. The paper is concerned with the sensitivity of the far scattered field with respect to small perturbations of the shape of the scatterer. Using a modification of the method of adjoint problems (K. Dems, Z. Mróz, Internat. J. Solids Structures 20 (1984) 527-552) we obtain a representation for the shape derivative which is well suited for a numerical realization with boundary element methods and which shows in some cases directly the influence of the singularities of the solution on the sensitivity of the far-field patterns.  相似文献   

7.
When one uses high-order finite difference schemes for the wave equation, for instance fourth order schemes, the treatment of boundary conditions poses a real difficulty since one needs several additional equations (for the nodes close to the boundary), while one single scalar boundary condition is available. In the case of perfectly reflecting boundary conditions, namely the homogeneous Neumann or Dirichlet conditions, this difficulty can be overcomed by the use of the well-known image principle, which permits the extension of the equation outside of the domain of calculation by an appropriate symmetrization of the data. We propose in this article a generalization of this principle to the absorbing boundary conditions. Through a symmetrization process, we are led to introduce a damped wave equation with a damping term supported by the boundary. The treatment of the boundary condition is then replaced by the approximation of this new damped wave equation in the whole space. The theoretical justification of our approach is based on new energy estimates for the wave equation (when high-order absorbing boundary conditions are used), and constitutes an alternative to the use of the well-known Kreiss criterion to prove the stability of the associated initial boundary value problems. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
In this paper we describe some modified regularized boundary integral equations to solve the exterior boundary value problem for the Helmholtz equation with either Dirichlet or Neumann boundary conditions. We formulate combined boundary integral equations which are uniquely solvable for all wave numbers even for Lipschitz boundaries Γ=∂Ω. This approach extends and unifies existing regularized combined boundary integral formulations.  相似文献   

9.
A mathematical model is given for the magnetohydrodynamic (MHD) pipe flow as an inner Dirichlet problem in a 2D circular cross section of the pipe, coupled with an outer Dirichlet or Neumann magnetic problem. Inner Dirichlet problem is given as the coupled convection‐diffusion equations for the velocity and the induced current of the fluid coupling also to the outer problem, which is defined with the Laplace equation for the induced magnetic field of the exterior region with either Dirichlet or Neumann boundary condition. Unique solution of inner Dirichlet problem is obtained theoretically reducing it into two boundary integral equations defined on the boundary by using the corresponding fundamental solutions. Exterior solution is also given theoretically on the pipe wall with Poisson integral, and it is unique with Dirichlet boundary condition but exists with an additive constant obtained through coupled boundary and solvability conditions in Neumann wall condition. The collocation method is used to discretize these boundary integrals on the pipe wall. Thus, the proposed procedure is an improved theoretical analysis for combining the solution methods for the interior and exterior regions, which are consolidated numerically showing the flow behavior. The solution is simulated for several values of problem parameters, and the well‐known MHD characteristics are observed inside the pipe for increasing values of Hartmann number maintaining the continuity of induced currents on the pipe wall.  相似文献   

10.
《偏微分方程通讯》2013,38(5-6):643-661
ABSTRACT

In this paper we prove global and almost global existence theorems for nonlinear wave equations with quadratic nonlinearities in infinite homogeneous waveguides. We can handle both the case of Dirichlet boundary conditions and Neumann boundary conditions. In the case of Neumann boundary conditions we need to assume a natural nonlinear Neumann condition on the quasilinear terms. The results that we obtain are sharp in terms of the assumptions on the dimensions for the global existence results and in terms of the lifespan for the almost global results. For nonlinear wave equations, in the case where the infinite part of the waveguide has spatial dimension three, the hypotheses in the theorem concern whether or not the Laplacian for the compact base of the waveguide has a zero mode or not.  相似文献   

11.
We present an inequality for the reduced wave operator in the exterior of a star-shaped surface in n-space, with a Dirichlet boundary condition on the surface and a radiation condition at infinity. This inequality is used to demonstrate the continuous dependence (in a suitable norm) of the solution of a scattering problem upon the boundary data and inhomogeneous term in the differential equation. This basic result is then used together with the results of D. Ludwig [7] to prove that the formal solution of the scattering problem for a convex body, which is given by geometrical optics, is asymptotic to the exact solution. Similar results have been given in two dimensions by V. S. Buslaev [1] and R. Grimshaw [2], using different methods, who also consider the Neumann problem. Unfortunately the methods used here are inapplicable in that case.  相似文献   

12.
We prove theorems on the existence and regularization of periodic solutions of the wave equation with variable coefficients on an interval with homogeneous Dirichlet and Neumann boundary conditions. The nonlinear term has a power-law growth or satisfies the nonresonance condition at infinity.  相似文献   

13.
We treat Zolésio’s velocity method of shape calculus using the formalism of differential forms, in particular, the notion of Lie derivative. This provides a unified and elegant approach to computing even higher-order shape derivatives of domain and boundary integrals and avoids the tedious manipulations entailed by classical vector calculus. Hitherto unknown expressions for shape Hessians can be derived with little effort. The perspective of differential forms perfectly fits second-order boundary value problems (BVPs). We illustrate its power by deriving the shape derivatives of solutions to second-order elliptic BVPs with Dirichlet, Neumann and Robin boundary conditions. A new dual mixed variational approach is employed in the case of Dirichlet boundary conditions.  相似文献   

14.
We define and analyse a numerical algorithm for the approximation of parabolic equations on a general 2D domain with Dirichlet boundary conditions. It couples wavelet approximations with fictitious domain surface Lagrange multiplier approaches. This algorithm turns out to be precise, fast and numerically efficient.  相似文献   

15.
We consider a planar waveguide modeled by the Laplacian in a straight infinite strip with the Dirichlet boundary condition on the upper boundary and with frequently alternating boundary conditions (Dirichlet and Neumann) on the lower boundary. The homogenized operator is the Laplacian subject to the Dirichlet boundary condition on the upper boundary and to the Dirichlet or Neumann condition on the lower one. We prove the uniform resolvent convergence for the perturbed operator in both cases and obtain the estimates for the rate of convergence. Moreover, we construct the leading terms of the asymptotic expansions for the first band functions and the complete asymptotic expansion for the bottom of the spectrum. Bibliography: 17 titles. Illustrations: 3 figures.  相似文献   

16.
This article addresses the questions of existence, uniqueness, and finite element approximation (including some computational aspects) of solutions to the equations of steady-state magnetohy-drodynamic (MHD) when buoyancy effects due to temperature differences in the flow cannot be neglected. We couple the MHD equations to the heat equation and employ the well-known Boussinesq approximation. We consider the equations posed on a bounded three-dimensional domain. The boundary conditions for the velocity are of Dirichlet type; the boundary conditions for the temperature are mixed (of Dirichlet type and of Neumann type); we also specify the normal component of the magnetic field and tangential component of the electric field on the boundary. We point out that these problems are relevant to many physical phenomena such as the cooling of nuclear reactors by electrically conducting fluids, continuous metal casting, crystal growth, and semi-conductor manufacture. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
We construct and analyze a family of well‐conditioned boundary integral equations for the Krylov iterative solution of three‐dimensional elastic scattering problems by a bounded rigid obstacle. We develop a new potential theory using a rewriting of the Somigliana integral representation formula. From these results, we generalize to linear elasticity the well‐known Brakhage–Werner and combined field integral equation formulations. We use a suitable approximation of the Dirichlet‐to‐Neumann map as a regularizing operator in the proposed boundary integral equations. The construction of the approximate Dirichlet‐to‐Neumann map is inspired by the on‐surface radiation conditions method. We prove that the associated integral equations are uniquely solvable and possess very interesting spectral properties. Promising analytical and numerical investigations, in terms of spherical harmonics, with the elastic sphere are provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
We obtain explicit formulas for the scattering of plane waves with arbitrary profile by a wedge under Dirichlet, Neumann and Dirichlet‐Neumann boundary conditions. The diffracted wave is given by a convolution of the profile function with a suitable kernel corresponding to the boundary conditions. We prove the existence and uniqueness of solutions in appropriate classes of distributions and establish the Sommerfeld type representation for the diffracted wave. As an application, we establish (i) stability of long‐time asymptotic local perturbations of the profile functions and (ii) the limiting amplitude principle in the case of a harmonic incident wave. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we consider boundary value problems in perforated domains with periodic structures and cavities of different scales, with the Neumann condition on some of them and mixed boundary conditions on others. We take a case when cavities with mixed boundary conditions have so called critical size (see [1]) and cavities with the Neumann conditions have the scale of the cell. In the same way other cases can be studied, when we have the Neumann and the Dirichlet boundary conditions or the Dirichlet condition and the mixed boundary condition on the boundary of cavities.There is a large literature where homogenization problems in perforated domains were studied [2];-[7];  相似文献   

20.
We investigate the large-time behavior of three types of initial-boundary value problems for Hamilton–Jacobi Equations with nonconvex Hamiltonians. We consider the Neumann or oblique boundary condition, the state constraint boundary condition and Dirichlet boundary condition. We establish general convergence results for viscosity solutions to asymptotic solutions as time goes to infinity via an approach based on PDE techniques. These results are obtained not only under general conditions on the Hamiltonians but also under weak conditions on the domain and the oblique direction of reflection in the Neumann case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号