首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions.  相似文献   

2.
M. Syed Ali 《中国物理 B》2012,21(7):70207-070207
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi-Sugeno (T-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.  相似文献   

3.
M. Syed Ali 《中国物理 B》2011,20(8):80201-080201
In this paper,the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered.A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs.The proposed stability conditions are demonstrated through numerical examples.Furthermore,the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed.Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.  相似文献   

4.
O.M. Kwon 《Physics letters. A》2010,374(10):1232-5781
This Letter investigates the problem of delay-dependent exponential stability analysis for uncertain stochastic neural networks with time-varying delay. Based on the Lyapunov stability theory, improved delay-dependent exponential stability criteria for the networks are established in terms of linear matrix inequalities (LMIs).  相似文献   

5.
In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen-Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples.  相似文献   

6.
姚洪兴  周佳燕 《中国物理 B》2011,20(1):10701-010701
This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point,then by employing the Lyapunov--Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays,in addition, the example is provided to illustrate the applicability of the result.  相似文献   

7.
《Physics letters. A》2019,383(19):2255-2263
This paper deals with the problem of finite-time synchronization of memristor-based complex-valued neural networks (MCVNNs) with time delays. Based on the theory of differential inclusions with discontinuous right-hand side, we establish a new algebraic criterion of the finite-time synchronization of memristor-based complex-valued neural networks with time delays. The obtained theoretical results complement and improve some existing achievements in the real number field. Meanwhile, the obtained sufficient condition is conducive to qualitative analysis for some complex-valued nonlinear delayed systems. In the end, the conclusion is substantiated with an example of numerical simulation.  相似文献   

8.
陈狄岚  张卫东 《中国物理 B》2008,17(4):1506-1512
This paper is concerned with the problem of robust H∞ control for structured uncertain stochastic neural networks with both discrete and distributed time varying delays. A sufficient condition is presented for the existence of H∞ control based on the Lyapunov stability theory. The stability criterion is described in terms of linear matrix inequalities (LMIs), which can be easily checked in practice. An example is provided to demonstrate the effectiveness of the proposed result.  相似文献   

9.
张为元  李俊民 《中国物理 B》2011,20(3):30701-030701
This paper investigates the global exponential stability of reaction-diffusion neural networks with discrete and distributed time-varying delays.By constructing a more general type of Lyapunov-Krasovskii functional combined with a free-weighting matrix approach and analysis techniques,delay-dependent exponential stability criteria are derived in the form of linear matrix inequalities.The obtained results are dependent on the size of the time-varying delays and the measure of the space,which are usually less conservative than delay-independent and space-independent ones.These results are easy to check,and improve upon the existing stability results.Some remarks are given to show the advantages of the obtained results over the previous results.A numerical example has been presented to show the usefulness of the derived linear matrix inequality(LMI)-based stability conditions.  相似文献   

10.
唐漾  钟恢凰  方建安 《中国物理 B》2008,17(11):4080-4090
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.  相似文献   

11.
12.
In this paper, we are concerned with input-to-state stability of a class of memristive bidirectional associative memory (BAM) neural networks with variable time delays. Based on a nonsmooth analysis and set-valued maps, some novel sufficient conditions are obtained for the input-to-state stability of such networks, which extended some known results as particular cases. Finally, a numerical example is presented to illustrate the feasibility and effectiveness of our results.  相似文献   

13.
李东  王慧  杨丹  张小洪  王时龙 《中国物理 B》2008,17(11):4091-4099
In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the method of linear matrix inequality (LMI) and parametrized first-order model transformation, several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained. A numerical example is given to illustrate the effectiveness of our results.  相似文献   

14.
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov–Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.  相似文献   

15.
In this Letter, a model describing dynamics of Cohen–Grossberg neural networks with distributed delays is considered. Without assuming Lipschitz conditions on activation functions, by employing Brouwer's fixed point theorem and applying inequality technique, some new sufficient conditions on the existence, uniqueness and exponential stability of equilibrium point are obtained. Finally, two examples with their numerical simulations are provided to show the correctness of our analysis.  相似文献   

16.
O.M. Kwon  J.W. Kwon  S.H. Kim 《中国物理 B》2011,20(5):50505-050505
In this paper,the problem of stability analysis for neural networks with time-varying delays is considered.By constructing a new augmented Lyapunov-Krasovskii’s functional and some novel analysis techniques,improved delaydependent criteria for checking the stability of the neural networks are established.The proposed criteria are presented in terms of linear matrix inequalities(LMIs) which can be easily solved and checked by various convex optimization algorithms.Two numerical examples are included to show the superiority of our results.  相似文献   

17.
In this Letter, the chaotification for a class of cellular neural networks with distributed delays is studied. On the basis of the largest Lyapunov exponent, the sensitivity to the initial conditions is studied for the distributed delays with kernel being weak and strong. Some theoretical results about the chaotification for the neural network with distributed time delays are derived. Finally, two numerical simulations are presented to illustrate the effectiveness of the theoretical results.  相似文献   

18.
The authors discuss the existence of the equilibrium point and its global exponential robust stability for reaction–diffusion interval neural networks with time-varying delays by means of the topological degree theory and Lyapunov-functional method. Since the diffusion phenomena, time delay and the perturbation due to noises as well as some unforced man-made faults could not be ignored in neural networks, the model presented here is close to the actual systems, and the sufficient conditions on global exponential robust stability established in this Letter, which are easily verifiable, have a wider adaptive range.  相似文献   

19.
籍艳  崔宝同 《中国物理 B》2010,19(6):60512-060512
In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB.  相似文献   

20.
This paper is concerned with the analysis problem for the exponential stability of a class of Cohen-Grossberg neural networks with variable and distributed delays. Some sufficient conditions ensuring the existence, uniqueness and exponential stability of the equilibrium point are obtained by employing Brouwer’s fixed-point theorem and by applying the inequality technique. In the results, we do not assume that the activation function satisfies the boundedness and the Lipschitz condition. Three numerical examples are given to show the effectiveness of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号