首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subject of this paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil, which can rotate around the elastic axis and oscillate in the vertical direction. The numerical simulation consists of the finite element approximation of the Navier–Stokes equations coupled with the system of ordinary differential equations describing the airfoil motion. The arbitrary Lagrangian–Eulerian (ALE) formulation of the Navier–Stokes equations, stabilization the finite element discretization and coupling of both models is discussed. Moreover, the Reynolds averaged Navier–Stokes (RANS) system of equations together with the Spallart–Almaras turbulence model is also discussed. The computational results of aeroelastic calculations are presented and compared with the NASTRAN code solutions.  相似文献   

2.
We study an initial boundary value problem for the three-dimensional Navier–Stokes equations of viscous heat-conductive fluids in a bounded smooth domain. We establish a blow-up criterion for the local strong solutions in terms of the temperature and the gradient of velocity only, similar to the Beale–Kato–Majda criterion for ideal incompressible flows.  相似文献   

3.
In this paper, we consider a Cauchy problem for the three-dimensional compressible viscoelastic flow with large initial data. We establish a blow-up criterion for the strong solutions in terms of the gradient of velocity only, which is similar to the Beale-Kato-Majda criterion for ideal incompressible flow (cf. Beale et al. (1984) [20]) and the blow-up criterion for the compressible Navier-Stokes equations (cf. Huang et al. (2011) [21]).  相似文献   

4.
This work deals with a viscous two-phase liquid–gas model relevant to the flow in wells and pipelines. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. The model is rewritten in terms of Lagrangian coordinates and is studied in a free boundary setting where the liquid and gas masses are of compact support initially, and continuous at the boundary. Consequently, the initial masses involve a transition to single-phase gas flow and vacuum at the boundary. An appropriate balance between pressure and viscous forces is identified which allows obtaining pointwise upper and lower estimates of masses. These estimates rely on the assumption of a certain relation between the rate of degeneracy of the viscosity coefficient and the rate that determines how fast the initial masses are vanishing at the boundary. By combining these estimates with basic energy type of estimates, higher order regularity estimates are obtained. The existence of global weak solutions is then proved by showing compactness for a class of semi-discrete approximations.  相似文献   

5.
In this paper, we consider the free boundary problem for a simplified version of Ericksen–Leslie equations modeling the compressible hydrodynamic flow of nematic liquid crystals in dimension one. We obtain both existence and uniqueness of global classical solutions provided that the initial density is away from vacuum.  相似文献   

6.
In this paper we discuss the numerical approximation of the displacement form of the acoustic wave equation using mixed finite elements. The mixed formulation allows for approximation of both displacement and pressure at each time step, without the need for post-processing. Lowest-order and next-to-lowest-order Raviart–Thomas elements are used for the spatial discretization, and centered finite differences are used to advance in time. Use of these Raviart–Thomas elements results in a diagonal mass matrix for resolution of pressure, and a mass matrix for the displacement variable that is sparse with a simple structure. Convergence results for a model problem are provided, as are numerical results for a two-dimensional problem with a point source.  相似文献   

7.
In this work we propose and apply a numerical method based on finite volume relaxation approximation for computing the bed-load sediment transport in shallow water flows, in one and two space dimensions. The water flow is modeled by the well-known nonlinear shallow water equations which are coupled with a bed updating equation. Using a relaxation approximation, the nonlinear set of equations (and for two different formulations) is transformed to a semilinear diagonalizable problem with linear characteristic variables. A second order MUSCL-TVD method is used for the advection stage while an implicit–explicit Runge–Kutta scheme solves the relaxation stage. The main advantages of this approach are that neither Riemann problem solvers nor nonlinear iterations are required during the solution process. For the two different formulations, the applicability and effectiveness of the presented scheme is verified by comparing numerical results obtained for several benchmark test problems.  相似文献   

8.
A general formulation of the homogenization problem of compressible fluid flow through a periodic porous material in turbomachines is presented here. This formulation is able to derive a Forchheimer law with a mean velocity dependent permeability as equivalent macroscopic behavior. To specify this permeability, additional flow problems are defined on the unit cell and solved by a mixed stabilized finite element discretization. The application of the Galerkin least-square (GLS) method requires the introduction of two stabilization terms with appropriate parameters. The mixed finite element discretization of these unit cell problems is finally outlined.  相似文献   

9.
We show existence and regularity of solution for the compressible viscous steady state Navier–Stokes system on a polygon having a grazing corner and that the density has a jump discontinuity across a curve inside the domain. There are corresponding jumps in derivatives of the velocity. The solution comes from a well-posed boundary value problem on a polygonal domain with a non-convex corner. A formula for the decay of the jump is given. The decay formula suggests that density jumps can occur in a compressible flow with a non-vanishing viscosity.  相似文献   

10.
In this paper we consider a mathematical model describing a dynamic linear elastic contact problem with nonmonotone skin effects. The subdifferential multivalued and multidimensional reaction–displacement law is employed. We treat an evolution hemivariational inequality of hyperbolic type which is a weak formulation of this mechanical problem. We establish a result on the existence of solutions to the Cauchy problem for the hemivariational inequality. This result is a consequence of an existence theorem for second order evolution inclusion. For the latter, using the parabolic regularization method, we obtain the solution as a limit when the viscosity term tends to zero.  相似文献   

11.
We present some applications of a lemma by Ladyzhenskaya and Solonnikov [Determination of solutions of boundary value problems for stationary Stokes and Navier–Stokes equations having an unbounded Dirichlet integral, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980) 117–160 (English Transl.: J. Soviet Math. 21 (1983) 728–761)]. Some other results in that paper referring to stationary Navier–Stokes equations are extended to a non-Newtonian fluid, the so-called micropolar fluid. This model depends on the microrotational viscosity νrνr which vanishes for a Navier–Stokes fluid. We use the lemma in full to show that, as νrνr tends to zero, the solutions of the Ladyzhenskaya–Solonnikov problem converge to the solutions of the corresponding problem for Navier–Stokes equations. In addition, we obtain a similar convergence regarding the Leray problem for micropolar fluids.  相似文献   

12.
The analytic approach proposed by Sekerzh-Zenkovich [On the theory of standing waves of finite amplitude, Dokl. Akad. Nauk USSR 58 (1947) 551–554] is developed in the present study of standing waves. Generalizing the solution method, a set of standing wave problems are solved, namely, the infinite- and finite-depth surface standing waves and the infinite- and finite-depth internal standing waves. Two-dimensional wave motion of an irrotational incompressible fluid in a rectangular domain is considered to study weakly nonlinear surface and internal standing waves. The Lagrangian formulation of the problems is used and the fifth-order perturbation solutions are determined. Since most of the approximate analytic solutions to these problems were obtained using the Eulerian formulation, the comparison of the results, as an example the analytic frequency–amplitude dependences, obtained in Lagrangian variables with the corresponding ones known in Eulerian variables has been carried out in the paper. The analytic frequency–amplitude dependences are in complete agreement with previous results known in the literature. Computer algebra procedures were written for the construction of asymptotic solutions. The application of the model constructed in Lagrangian formulation to a set of different problems shows the ability to correctly reproduce and predict a wide range of situations with different characteristics and some advantages of Lagrangian particle models (for example, the bigger radius of convergence of an expansion parameter than in Eulerian variables, simplification of the boundary conditions, parametrization of a free boundary).  相似文献   

13.
A model is derived for the coupling of transient free surface and pressurized flows. The resulting system of equations is written under a conservative form with discontinuous gradient of pressure. We treat the transition point between the two types of flows as a free boundary associated to a discontinuity of the gradient of pressure. The numerical simulation is performed by making use of a Roe-like finite volume scheme that we adapted to such discontinuities in the flux. The validation is performed by comparison with experimental results.  相似文献   

14.
A three-field finite element scheme designed for solving time-dependent systems of partial differential equations governing viscoelastic flows is introduced. The linearized form of this system is a generalized time-dependent Stokes system. Once a classical time-discretization is performed, the resulting three-field system of equations allows for a stable approximation of velocity, pressure and extra stress tensor, by means of continuous piecewise linear finite elements, in both two and three dimension space. Another advantage of the new formulation is the fact that it implicitly provides an algorithm for the iterative resolution of system non-linearities, in the case of viscoelastic flows. Additionally, convergence in an appropriate sense applying to these three flow fields is demonstrated, for such generalized Stokes system. Numerical results are given in order to illustrate the performance of the new approach.  相似文献   

15.
Solutions for the fully compressible Navier–Stokes equations are presented for the flow and temperature fields in a cubic cavity with large horizontal temperature differences. The ideal-gas approximation for air is assumed and viscosity is computed using Sutherland's law. The three-dimensional case forms an extension of previous studies performed on a two-dimensional square cavity. The influence of imposed boundary conditions in the third dimension is investigated as a numerical experiment. Comparison is made between convergence rates in case of periodic and free-slip boundary conditions. Results with no-slip boundary conditions are presented as well. The effect of the Rayleigh number is studied.  相似文献   

16.
17.
A meshfree method for two-phase immiscible incompressible flows including surface tension is presented. The continuum surface force (CSF) model is used to include the surface tension force. The incompressible Navier–Stokes equation is considered as the mathematical model. Application of implicit projection method results in linear second-order partial differential equations for velocities and pressure. These equations are then solved by the finite pointset method (FPM), which is a meshfree and Lagrangian method. The fluid is represented as finite number of particles and the immiscible fluids are distinguished by the color of each particle. The interface is tracked automatically by advecting the color functions for each particle. Two test cases, Laplace's law and the Rayleigh–Taylor instability in 2D have been presented. The results are found to be consistent with the theoretical results.  相似文献   

18.
We consider a family of Gagliardo–Nirenberg–Sobolev interpolation inequalities which interpolate between Sobolev?s inequality and the logarithmic Sobolev inequality, with optimal constants. The difference of the two terms in the interpolation inequalities (written with optimal constant) measures a distance to the manifold of the optimal functions. We give an explicit estimate of the remainder term and establish an improved inequality, with explicit norms and fully detailed constants. Our approach is based on nonlinear evolution equations and improved entropy–entropy production estimates along the associated flow. Optimizing a relative entropy functional with respect to a scaling parameter, or handling properly second moment estimates, turns out to be the central technical issue. This is a new method in the theory of nonlinear evolution equations, which can be interpreted as the best fit of the solution in the asymptotic regime among all asymptotic profiles.  相似文献   

19.
The objective of this work is to explore a compressible gas-liquid model designed for modeling of well flow processes. We build into the model well-reservoir interaction by allowing flow of gas between well and formation (surrounding reservoir). Inflow of gas and subsequent expansion of gas as it ascends towards the top of the well (a so-called gas kick) represents a major concern for various well operations in the context of petroleum engineering. We obtain a global existence result under suitable assumptions on the regularity of initial data and the rate function that controls the flow of gas between well and formation. Uniqueness is also obtained by imposing more regularity on the initial data. The key estimates are to obtain appropriate lower and upper bounds on the gas and liquid masses. For that purpose we introduce a transformed version of the original model that is highly convenient for analysis of the original model. In particular, in the analysis of the transformed model additional terms, representing well-formation interaction, can be treated by natural extensions of arguments that previously have been employed for the single-phase Navier-Stokes model. The analysis ensures that transition to single-phase regions do not appear when the initial state is a true gas-liquid mixture.  相似文献   

20.
We introduce the ultra-weak variational formulation (UWVF) for fluid–solid vibration problems. In particular, we consider the scattering of time-harmonic acoustic pressure waves from solid, elastic objects. The problem is modeled using a coupled system of the Helmholtz and Navier equations. The transmission conditions on the fluid–solid interface are represented in an impedance-type form after which we can employ the well known ultra-weak formulations for the Helmholtz and Navier equations. The UWVF approximation for both equations is computed using a superposition of propagating plane waves. A condition number based criterion is used to define the plane wave basis dimension for each element. As a model problem we investigate the scattering of sound from an infinite elastic cylinder immersed in a fluid. A comparison of the UWVF approximation with the analytical solution shows that the method provides a means for solving wave problems on relatively coarse meshes. However, particular care is needed when the method is used for problems at frequencies near the resonance frequencies of the fluid–solid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号