首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the numerical analysis of a finite element method with stabilization for the unsteady incompressible Navier–Stokes equations. Incompressibility and convective effects are both stabilized adding an interior penalty term giving L 2-control of the jump of the gradient of the approximate solution over the internal faces. Using continuous equal-order finite elements for both velocities and pressures, in a space semi-discretized formulation, we prove convergence of the approximate solution. The error estimates hold irrespective of the Reynolds number, and hence also for the incompressible Euler equations, provided the exact solution is smooth.  相似文献   

2.
3.
In this paper, we focus on a local superconvergence analysis of the finite element method for the Stokes equations by local projections. The local and global superconvergence results of finite element solutions are provided for the Stokes problem under some corresponding regularity assumptions. Conclusion can be drawn that the local superconvergence has advantages over the global superconvergence in two important aspects. On the one hand, it offsets theoretical limitation in practical applications. On the other hand, interior estimates are derived on the base of local properties of the domain without global smoothness for the exact solution and prior regularity of the problem globally over the whole domain.  相似文献   

4.
This paper considers a stabilized method based on the difference between a consistent and an under-integrated mass matrix of the pressure for the Stokes equations approximated by the lowest equal-order finite element pairs (i.e., the P1P1P1P1 and Q1Q1Q1Q1 pairs). This method only offsets the discrete pressure space by the residual of the simple and symmetry term at element level in order to circumvent the inf–sup condition. Optimal error estimates are obtained by applying the standard Galerkin technique. Finally, the numerical illustrations agree completely with the theoretical expectations.  相似文献   

5.
We discuss the numerical integration of polynomials times non-polynomial weighting functions in two dimensions arising from multiscale finite element computations. The proposed quadrature rules are significantly more accurate than standard quadratures and are better suited to existing finite element codes than formulas computed by symbolic integration. We validate this approach by introducing the new quadrature formulas into a multiscale finite element method for the two-dimensional reaction–diffusion equation.  相似文献   

6.
Based on two-grid discretizations, some local and parallel finite element algorithms for the Stokes problem are proposed and analyzed in this paper. These algorithms are motivated by the observation that for a solution to the Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One technical tool for the analysis is some local a priori estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids. Y. He was partially subsidized by the NSF of China 10671154 and the National Basic Research Program under the grant 2005CB321703; A. Zhou was partially supported by the National Science Foundation of China under the grant 10425105 and the National Basic Research Program under the grant 2005CB321704; J. Li was partially supported by the NSF of China under the grant 10701001. J. Xu was partially supported by Alexander von Humboldt Research Award for Senior US Scientists, NSF DMS-0609727 and NSFC-10528102.  相似文献   

7.
We investigate a steady flow of a viscous compressible fluid with inflow boundary condition on the density and inhomogeneous slip boundary conditions on the velocity in a cylindrical domain Ω=Ω0×(0,L)∈R3. We show existence of a solution , p>3, where v is the velocity of the fluid and ρ is the density, that is a small perturbation of a constant flow (, ). We also show that this solution is unique in a class of small perturbations of . The term u⋅∇w in the continuity equation makes it impossible to show the existence applying directly a fixed point method. Thus in order to show existence of the solution we construct a sequence (vn,ρn) that is bounded in and satisfies the Cauchy condition in a larger space L(0,L;L2(Ω0)) what enables us to deduce that the weak limit of a subsequence of (vn,ρn) is in fact a strong solution to our problem.  相似文献   

8.
We study an initial boundary value problem for the three-dimensional Navier–Stokes equations of viscous heat-conductive fluids in a bounded smooth domain. We establish a blow-up criterion for the local strong solutions in terms of the temperature and the gradient of velocity only, similar to the Beale–Kato–Majda criterion for ideal incompressible flows.  相似文献   

9.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

10.
We consider Maxwell’s equations with periodic coefficients as it is usually done for the modeling of photonic crystals. Using Bloch/Floquet theory, the problem reduces in a standard way to a modification of the Maxwell cavity eigenproblem with periodic boundary conditions. Following [8], a modification of edge finite elements is considered for the approximation of the band gap. The method can be used with meshes of tetrahedrons or parallelepipeds. A rigorous analysis of convergence is presented, together with some preliminary numerical results in 2D, which fully confirm the robustness of the method. The analysis uses well established results on the discrete compactness for edge elements, together with new sharper interpolation estimates.  相似文献   

11.
This paper concerns a determination procedure for conformal mapping of a wing through a finite element computation of potential function associated with the flow of 2-dimensional perfect fluid around the given wing section. Through our numerical procedure a family of mappings is obtained in the forms of finite Laurent series for an initial wing section input. Each member of the family describes a wing section located in a neighboring domain of the input one. Some of them could be expected as modified versions of the original wing section input, although they could not recover completely it.Inputting the shape of wing section has ambiguity in practical cases of wing sections such as the NACA23012 wing section. We would like to postulate that our identification procedure should be employed in the determination process of numerical profiles of the wing section considered, since identified ones are significantly easier in numerical processing than the original input shape.  相似文献   

12.
This work deals with a viscous two-phase liquid–gas model relevant to the flow in wells and pipelines. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. The model is rewritten in terms of Lagrangian coordinates and is studied in a free boundary setting where the liquid and gas masses are of compact support initially, and continuous at the boundary. Consequently, the initial masses involve a transition to single-phase gas flow and vacuum at the boundary. An appropriate balance between pressure and viscous forces is identified which allows obtaining pointwise upper and lower estimates of masses. These estimates rely on the assumption of a certain relation between the rate of degeneracy of the viscosity coefficient and the rate that determines how fast the initial masses are vanishing at the boundary. By combining these estimates with basic energy type of estimates, higher order regularity estimates are obtained. The existence of global weak solutions is then proved by showing compactness for a class of semi-discrete approximations.  相似文献   

13.
The purpose of this paper is to explore a viscous two-phase liquid-gas model relevant for well and pipe flow. Our approach relies on applying suitable modifications of techniques previously used for studying the single-phase isothermal Navier-Stokes equations. A main issue is the introduction of a novel two-phase variant of the potential energy function needed for obtaining fundamental a priori estimates. We derive an existence result for weak solutions in a setting where transition to single-phase flow is guaranteed not to occur when the initial state is a true mixture of both phases. Some numerical examples are also included in order to demonstrate characteristic behavior of solutions. In particular, we illustrate how two-phase flow is genuinely different compared to single-phase flow concerning the behavior of an initial mass discontinuity.  相似文献   

14.
In this paper, we prove a blow-up criterion in terms of the upper bound of the liquid mass for the strong solution to the two-dimensional (2D) viscous liquid-gas two-phase flow model in a smooth bounded domain. The result also applies to three-dimensional (3D) case.  相似文献   

15.
In this paper, we study a free boundary value problem for two-phase liquid-gas model with mass-dependent viscosity coefficient when both the initial liquid and gas masses connect to vacuum with a discontinuity. This is an extension of the paper [S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV]. Just as in [S. Evje, K.H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV], the gas is assumed to be polytropic whereas the liquid is treated as an incompressible fluid. We give the proof of the global existence and uniqueness of weak solutions when β∈(0,1], which have improved the previous result of Evje and Karlsen, and get the asymptotic behavior result, also we obtain the regularity of the solutions by energy method.  相似文献   

16.
Summary The finite element analysis of a cascade flow problem with a given velocity circulation round profiles is presented. The nonlinear problem for the stream function with nonstandard boundary conditions is discretized by conforming linear triangular elements. We deal with the properties of the discrete problem and study the convergence of the method both for polygonal and nonpolygonal domains, including the effect of numerical integration.  相似文献   

17.
A proper orthogonal decomposition (POD) method is applied to a usual finite volume element (FVE) formulation for parabolic equations such that it is reduced to a POD FVE formulation with lower dimensions and high enough accuracy. The error estimates between the reduced POD FVE solution and the usual FVE solution are analyzed. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is also shown that the reduced POD FVE formulation based on POD method is both feasible and highly efficient.  相似文献   

18.
We consider the full Navier-Stokes equations for viscous polytropic fluids with nonnegative thermal conductivity. We prove the existence of unique local strong solutions for all initial data satisfying some compatibility condition. The initial density need not be positive and may vanish in an open set. Moreover our results hold for both bounded and unbounded domains.  相似文献   

19.
This paper is devoted to analyze a splitting method for solving incompressible inviscid rotational flows. The problem is first recast into the velocity–vorticity–pressure formulation by introducing the additional vorticity variable, and then split into three consecutive subsystems. For each subsystem, the L2L2 least-squares finite element approach is applied to attain accurate numerical solutions. We show that for each time step this splitting least-squares approach exhibits an optimal rate of convergence in the H1H1 norm for velocity and pressure, and a suboptimal rate in the L2L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates.  相似文献   

20.
Solutions for the fully compressible Navier–Stokes equations are presented for the flow and temperature fields in a cubic cavity with large horizontal temperature differences. The ideal-gas approximation for air is assumed and viscosity is computed using Sutherland's law. The three-dimensional case forms an extension of previous studies performed on a two-dimensional square cavity. The influence of imposed boundary conditions in the third dimension is investigated as a numerical experiment. Comparison is made between convergence rates in case of periodic and free-slip boundary conditions. Results with no-slip boundary conditions are presented as well. The effect of the Rayleigh number is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号