首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of deposit on the membrane surface (fouling) is one of the major operating problems of membrane distillation process. The influence of fouling on the performance of this process was investigated during the concentration of wastewater with proteins, bilge water, brines, and the production of demineralized water. The experiments were performed with polypropylene capillary membranes. The morphology and composition of the fouling layer were studied using Fourier transform infrared with diffuse reflectance spectroscopy and scanning electron microscopy coupled with the energy dispersing spectrometry. Fouling with various intensity was observed in most of the studied cases. Permeate flux decline was mainly caused by an increase in the heat resistance of the fouling layer. However in the case of non-porous deposit, a magnitude of the permeate flux was also determined by a resistance of water transport through the deposit layer. It was found the deposits were formed not only on the membrane surface, but also inside the pores. Salt crystallization in the membrane pores besides their wetting, also caused the mechanical damage of the membrane structure. The intensity of the fouling can be limited by the pretreatment of feed and a selection of the operating conditions of membrane distillation.  相似文献   

2.
Application of ultrafiltration, nanofiltration, reverse osmosis, membrane distillation, and integrated membrane processes for the preparation of process water from natural water or industrial effluents was investigated. A two-stage reverse osmosis plant enabled almost complete removal of solutes from the feed water. High-purity water was prepared using the membrane distillation. However, during this process a rapid membrane fouling and permeate flux decline was observed when the tap water was used as a feed. The precipitation of deposit in the modules was limited by the separation of sparingly soluble salts from the feed water in the nanofiltration. The combined reverse osmosis—membrane distillation process prevented the formation of salt deposits on the membranes employed for the membrane distillation. Ultrafiltration was found to be very effective removing trace amounts of oil from the feed water. Then the ultrafiltration permeate was used for feeding of the remaining membrane modules resulting in the total removal of oil residue contamination. The ultrafiltration allowed producing process water directly from the industrial effluents containing petroleum derivatives. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 22–26 May 2006.  相似文献   

3.
This investigation was performed to find if the nanometer SiO2 added in the membranes can improve the pervaperation performance of the membranes. Acrylic acid (AA) and acrylonitrile (AN) were synthesized by solution polymerization with and without nanometer SiO2. The copolymer solution was made into main body of the membranes, then composited with the polyvinyl alcohol (PVA) acetal membranes, to make the three-layer sandwich composite pervaporation membranes. The structure and the performance of the membranes were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG), dynamic themomechanical analysis apparatus (DMA) and mechanical property testing. Pervaporation experiments were carried out using these membranes to separate the mixtures of methanol/water over the complete concentration range 70–98%, and results showed that the selectivity of the membranes with nanometer SiO2 had notable improvement. For the 98% mixture at 60 °C, the separate factor is up to 1458, which is improved more than 10 times compared to the membranes without nanometer SiO2, the permeate flux is up to 325 g/(m2 h). For the 70% mixture at 70 °C, the separate factor arrived at 12, the permeate flux is up to 7097 g/(m2 h), which is improved more than 14 times compared to membranes without nanometer SiO2. It was concluded that the pervaperation performance of the membranes can improve greatly by nanometer SiO2.  相似文献   

4.
A small pilot plant for direct contact membrane distillation (DCMD) based desalination was built and operated successfully on a daily basis for 3 months. The operation employed hot brine at 64–93 °C and distillate at 20–54 °C. The hot brine was either city water, city water containing salt at the level of 3.5, 6 or 10%, or sea water trucked in from Long Island Sound, CT. One to ten horizontal crossflow hollow fiber membrane modules each having either 2448 or 2652 hollow fibers and 0.61 or 0.66 m2 surface area were combined in various configurations to study the plant performance. The highest water vapor flux of 55 kg/(m2 h) was achieved with two modules in series; the flux varied between 15 and 33 kg/(m2 h) for configurations employing 6–10 modules. The highest distillate production rate achieved was 0.62 gallons per minute (gpm). The membrane modules never showed any sign of distillate contamination by salt. The plant operated successfully with a very limited flux reduction at salt concentrations up to 19.5% from sea water. A mathematical model was successfully developed to describe the performance of the pilot plant with multiple crossflow modules in different test configurations.  相似文献   

5.
In this paper, a novel method was developed to enhance the assembly of polyelectrolyte composite membranes by inducing an electric field during electrostatic adsorption process. The hydrolyzed polyacrylonitrile (PAN) ultrafiltration (UF) membrane was placed in between a capacitor setup. The polyethyleneimine (PEI) was compulsorily assembled on the PAN support under the action of external electric force. Subsequently, the polyelectrolyte composite membranes were evaluated by pervaporation separation of water and alcohol mixture. The membrane obtained with only one PEI layer had a separation factor of 304 and a permeate flux of 512 g/m2 h (75 °C) for pervaporation of 95 wt% ethanol–water mixture. An atomic force microscopy was also used to observe the microtopographical changes. The regularity of the membranes assembled by the new method was also improved in comparison with the membrane assembled by a dynamic layer-by-layer adsorption.  相似文献   

6.
The concentration of NaCl solution containing natural organic matter by membrane distillation (MD) has been performed. The salt solution produced during animal intestines processing was used as a feed. The presence of organic compounds in the feed caused the fouling of MD membranes. The experiments were performed with polypropylene capillary membranes. A rapid flux decline caused by the deposition of organic matter on the membrane surface has been observed. The morphology and composition of the fouling layer was studied using scanning electron microscopy (SEM) coupled with energy dispersion spectrometry (EDS) and Fourier transform infrared with diffuse reflectance spectroscopy (FTIR-DRS). Protein and sodium chloride constituted the major components of the gel layer. Rinsing of the MD module with a 2 wt.% citric acid solution removed a part of the fouling layer. Boiling of spent NaCl solution followed by filtration resulted in the separation of the organic matter in the form of a deposit. This enabled a significant reduction in the occurrence of fouling phenomenon.  相似文献   

7.
Scaling and wettability of hydrophobic membranes were studied during the membrane distillation applied for the production of fresh water from the concentrated salt solutions. The studies were performed with the use of membrane modules in which the capillary membranes from polypropylene were assembled. A saline ground water containing several sparingly soluble salts was used as a feeding solution. The presence of such compounds caused an intensive surface and internal scaling. Due to the scaling, a partial wetting of the membrane walls and the permeation of salts into distillate were observed. These phenomena were eliminated for the membranes with thicker walls when the amount of deposit was limited by a periodic rinsing of the module with water. During this study, the feed was concentrated up to the supersaturation state, which caused a salt crystallization on the membrane surface, and as a consequence, the permeate flux was reduced to zero. In this case, the internal scaling can be limited using the capillary membranes with a net covering their surface.  相似文献   

8.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

9.
Although water supplies are prominently dependent on desalination technology, desalination plant facing severe issues of discharged brine concentrate. Membrane distillation crystallization is an emerging synergistic technology that resolves the issue of brine concentrate by recovering clean water and value-added minerals simultaneously. In the present study, properties of polyvinylidene fluoride (PVDF) membrane were modified by incorporation of exfoliated fillers of hexagonal boron nitride and polyethylene glycol. The changes in morphology, surface roughness, hydrophobicity, thermal stability, and chemical composition of the prepared membranes were evaluated by scanning electron microscopy, atomic force microscopy, contact angle, thermogravimetric analysis, Fourier-transform infrared spectroscopy, respectively. Membrane distillation crystallization experiments were conducted to observe the effect of modified membranes on the permeate flux and salts recovery at different feed temperatures. The results showed a significant improvement in the permeate flux with modified membranes compared with pure PVDF membrane. It was found that hexagonal boron nitride/polyethylene glycol200 incorporated PVDF membrane gave the higher permeate flux (3.41 kg/m2 h for K2SO4 and 2.62 kg/m2 h for KNO3) at a temperature of 80 °C along with higher salts recovery than pure PVDF membranes. A 100 h long run test was conducted on modified membranes, which showed consistency in permeate flux with a marginal increase in conductivity.  相似文献   

10.
The results of osmotic membrane distillation carried out for 2.5 years were presented in this work. The influence of the process conditions, such as temperature and brine concentration on the permeate flux, was investigated. The saturated NaCl solutions and distilled water were used as a stripping solution and feed, respectively. A continuous regeneration of stripping solution was conducted using a method of natural evaporation from the surface of Bia?ecki rings to the air surrounding the installation. The possibilities of application of Accurel PP S6/2 hydrophobic polypropylene membranes were tested. It was studied whether a saturation stripping solution does not cause scaling and wettability of membranes. It was found that most of the pores in the used membranes were non-wetted, and the salt retention over 99% was maintained during a study period. However, the obtained permeate flux was decreased by 10–20%. The SEM examinations revealed that it was caused by amorphous deposit, which was formed on the membrane surface on the brine side. The SEM–EDS analysis demonstrated that the deposit composition mainly included Si and O.  相似文献   

11.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes coated with silicone rubber and with sol–gel polytrifluoropropylsiloxane were obtained by surface-coated modification method. The effects of coating time, coating temperature and the concentration of silicone rubber solution on the vacuum membrane distillation (VMD) properties of silicone rubber coated membranes were investigated. It was found that high water permeate flux could be gotten in low temperature and low concentration of silicone rubber solution. When the coating temperature is 60 °C, the coating time is 9 h and the concentration of silicone rubber solution is 5 g L−1 the water permeate flux of the silicone rubber coated membrane is 3.5 L m−2 h−1. The prepolymerization time influence the performance of polytrifluoropropylsiloxane coated membranes, and higher prepolymerization time decrease the water permeate flux of the membrane. The water permeate flux and the salt rejection was 3.7 L m−2 h−1 and 94.6%, respectively in 30 min prepolymerization period. The VMD performances of two composite membranes during long-term operation were studied, and the results indicated that the VMD performances of two composite membranes are quite stable. The salt rejection of silicone rubber coated membrane decreased from 99 to 95% and the water permeate flux fluctuated between 2.0 and 2.5 L m−2 h−1. The salt rejection of polytrifluoropropylsiloxane coated membrane decreased from 98 to 94% and the water permeate flux fluctuated in 1 L m−2 h−1 range.  相似文献   

12.
In the membrane distillation process only gaseous phase can exist in the membrane pores. The resistance to wettability of capillary polypropylene membranes has been investigated in this work. The SEM-EDS investigations revealed that the pores located up to 100 μm from the membrane surface were filled by the feed during the production of demineralized water over a period of 4500 h. However, the pores located inside the membrane wall were still dry and no feed leakage was observed. Both scaling and polypropylene degradation were indicated as the major reason for partial membrane wettability. The SEM-EDS, XRD and FTIR methods were used for investigations of polypropylene degradation, and material cracking and the presence of hydroxyl and carbonyl groups on the membrane surface has been identified. The membranes irradiated by UV light or stored up to 9 years in air were used to evaluate the membrane wetting caused by the products of polymer oxidation. The membrane samples were soaked in either water or a concentrated solution of NaCl at temperature of 343 K, and their wettability was evaluated on the basis of their variations in the air permeability. It was found that the products of polypropylene oxidation significantly accelerated the degree of wettability during the first 30 days of investigations, but after 60 days the results were similar. The soaked membrane samples wetted faster in NaCl solutions than those soaked in distilled water, which came as a result of the chemical reactions of salt with the hydroxyl and carbonyl groups found on the polypropylene surface.  相似文献   

13.
This study aims at investigating the kinetics of calcium carbonate precipitation (scaling), that occurs in the form of vaterite, when treating seawater by direct contact membrane distillation (DCMD) operated at high concentration factors (from 4 to 6). Induction time measurements carried out by dynamic light scattering (DLS) allowed to identify the shifting between homogeneous and heterogeneous nucleation mechanisms as a function of supersaturation. CaCO3 interfacial energy, evaluated for concentrated seawater solutions as 45 mJ/m2, increased by 7% as a consequence of the inhibition effect of humic acid, and it was reduced to 32 mJ/m2 in correspondence of heterogeneous nucleation occurring on microporous polypropylene membranes. Gibbs free energy barrier to the formation of critical nuclei was predicted with good accuracy as a function of physico-chemical properties of the membrane (porosity: 0.70, contact angle: 115 ± 2°).  相似文献   

14.
To circumvent the common swelling and deteriorated performance of integral asymmetric hollow fiber membranes for pervaporation dehydration, we have developed novel polyamide-imide (PAI)/polyetherimide (PEI) hollow fiber membranes with synergized performance with the aid of dual-layer spinning technology. Dehydration of C1–C4 alcohols has been conducted and the orders of their fluxes and permeances have been analyzed. The hollow fibers spun at 2 cm air gap and annealed at 75 °C exhibit the highest pervaporation performance: separation factors for t-butanol/water and iso-butanol/water binary systems are greater than 50,000 with flux more than 700 g/m2 h. A comparison with literature data shows that the newly developed membranes outperform most other polymeric membranes for the dehydration of IPA and butanols. The dual-layer hollow fiber membranes also exhibit good long-term stability up to 200 h. The superior performance can be attributed to (1) the balanced properties of PAI as the selective layer for dehydration pervaporation; (2) the low water uptake and less swelling characteristic of the PEI supporting layer; and (3) the desirable membrane morphology consisting of a fully porous inner layer, a porous interface, and an ultrathin dense-selective outer skin.  相似文献   

15.
A procedure involving the simultaneous performance of liquid–liquid microextraction and polypropylene microporous membrane solid-phase extraction was carried out. The applicability of the proposed procedure was evaluated through extraction of several organochlorine pesticides from river water, tomato and strawberry samples. The parameters affecting the extraction efficiency were optimized by multivariable designs, and the analytical features were estimated. Under optimized conditions, analytes were concentrated onto 1.5 cm long microporous membranes placed directly into the sample containing 15 mL of water with 20 μL of 1-octanol. The best extraction conditions were achieved at 59 °C, with 60 min of extraction time and 2.91 g of sodium chloride. The desorption of the analytes was carried out using 30 μL of a mixture of toluene and hexane in the proportion of 60:40% (v/v) for 10 min. Detection limits in the range of 2.7–20.0 ng L−1, 0.50–1.15 μg kg−1, and 1.53–12.77 μg kg−1 were obtained for river water, strawberry and tomato samples, respectively. Good repeatability was obtained for all three sample types. The results suggest that the proposed procedure represents a very simple and low-cost microextraction alternative rendering adequate limits of quantification for the determination of organochlorine pesticides in environmental and food samples.  相似文献   

16.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

17.
In this work we investigate the performance of high flux chemical vapour deposition (CVD) silica membranes for the separation of gas mixtures containing H2 and CO2 at various temperatures. The membranes were prepared by a counter diffusion CVD method where tetraethyl orthosilicate (TEOS) and O2 were used as reactants. Single gas permeation resulted in activated transport for the smaller kinetic diameter gases (H2 and He) whilst the larger kinetic diameter gases (CO2 and N2) showed negative activation energy. The single gas permeation of H2 increased from 5.1 × 10−7 to 7.0 × 10−7 mol m−2 s−1 Pa−1 in the temperature range 100–400 °C, and H2/CO2 and H2/N2 selectivities reached 36 and 57 at 400 °C, respectively. The H2 purity in the permeate stream also increased with temperature for H2:CO2 binary gas mixture, thus being beneficial for H2 diffusion. H2 competitively permeated through the membrane at a several range of gas mixtures, and a saturation level was achieved at H2:CO2 60:40 feed concentration, where the diffusion of CO2 molecules became negligible delivering ∼99% H2 purity in the permeate stream. These results substantiate that the counter diffusion CVD method produced thin silica film membranes with a very precise pore size control, in particular suggesting a narrow pore distribution with average pore radius of about 3.1 Å.  相似文献   

18.
Supported hydroxy sodalite (H-SOD) membranes were prepared on α-alumina disks using direct hydrothermal synthesis at 413 K for 3.5 h. The continuity of the membranes was verified using single gas permeation of He and N2 at ambient conditions. The membranes were impermeable to N2 and He, which validated absence of defects in the membrane structure. The membranes were used in dewatering several organic alcohol/water mixtures (organic alcohol being: methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, and 2-pentanol). The influence of feed temperature (303–473 K), feed concentration (0–100 mol% alcohol in the feed), and absolute feed pressure (1.6–2.4 MPa) on the water flux were analyzed. The absolute feed pressure had no effect on the water permeance. The membrane exhibited a water/alcohol separation factor larger than 106 and showed excellent thermal, mechanical, and operation stability in continuously dehydrating a water/ethanol mixture (72 mol% water) by pervaporation at 473 K and 2.2 MPa for 125 h. The normalized water flux correlated well with the water feed concentration for the primary alcohols. Below 40 mol% water in mixtures with secondary alcohols the water flux was three orders of magnitude lower. The water mobility through the membrane had an activation energy of ∼15 kJ/mol.  相似文献   

19.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

20.
Porous polypropylene membranes were coated with plasma polymerized titanium isopropoxide in a 75 kHz plasma reactor. It was noted that the presence of air in the plasma chamber increased the amount of deposited polymer. Selection of the process parameters enabled obtaining membranes with up to 300 εg cm?2 of polymerized titanium isopropoxide. Deposition of the titanium oxide layer resulted in the reduction of permeate flux but it significantly improved the membrane photocleaning ability. The recovery index reached the level of 95 % for membranes with the highest amount of the titanium oxide deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号