首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We propose an extension of the FENE-CR model for dilute polymer solutions [M.D. Chilcott, J.M. Rallison, Creeping flow of dilute polymer solutions past cylinders and spheres, J. Non-Newtonian Fluid Mech. 29 (1988) 382–432] and the Rouse-CCR tube model for linear entangled polymers [A.E. Likhtman, R.S. Graham, Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation, J. Non-Newtonian Fluid Mech. 114 (2003) 1–12], to describe the nonequilibrium stretching dynamics of polymer chains in strong extensional flows. The resulting models, designed to capture the progressive changes in the average internal structure (kinked state) of the polymer chain, include an ‘effective’ maximum contour length that depends on local flow dynamics. The rheological behavior of the modified models is compared with various results already published in the literature for entangled polystyrene solutions, and for the Kramers chain model (dilute polymer solutions). It is shown that the FENE-CR model with an ‘effective’ maximum contour length is able to describe correctly the hysteretic behavior in stress versus birefringence in start-up of uniaxial extensional flow and subsequent relaxation also observed and computed by Doyle et al. [P.S. Doyle, E.S.G. Shaqfeh, G.H. McKinley, S.H. Spiegelberg, Relaxation of dilute polymer solutions following extensional flow, J. Non-Newtonian Fluid Mech. 76 (1998) 79–110] and Li and Larson [L. Li, R.G. Larson, Excluded volume effects on the birefringence and stress of dilute polymer solutions in extensional flow, Rheol. Acta 39 (2000) 419–427] using Brownian dynamics simulations of bead–spring model. The Rolie–Poly model with an ‘effective’ maximum contour length exhibits a less pronounced hysteretic behavior in stress versus birefringence in start-up of uniaxial extensional flow and subsequent relaxation.  相似文献   

2.
Schneggenburger et al. [C. Schneggenburger, M. Kröger, S. Hess, An extended FENE dumbbell theory for concentration dependent shear-induced anisotropy in dilute polymer solutions, J. Non-Newtonian Fluid Mech. 62 (1996) 235] extended the original FENE dumbbell kinetic theory to describe concentration dependent shear-induced anisotropy in dilute polymer solutions by a mean-field approach. Besides providing an erratum to the above-mentioned paper and two revised figures we present related analytic results for steady shear and uniaxial elongational flow. Within the same framework we further consider a modified FENE potential and briefly discuss its implications.  相似文献   

3.
4.
We show how to formulate two-point boundary-value problems in order to compute fully-developed laminar channel and tube flow profiles for viscoelastic fluid models. The formulation is applied to Couette and pressure-driven flows separately, or a combination of both. The application of this methodology is illustrated analytically for the Upper-Convected Maxwell Model, and it is applied computationally for the Phan-Thien/Tanner and Giesekus Models. Numerical solutions exist for the last two models [J.Y. Yoo, H.C. Choi, On the steady simple shear flows of the one-mode Giesekus fluid, Rheol. Acta 28 (1989) 13–24; P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids, J. Fluid Mech. 387 (1999) 271–280; M.A. Alves, F.T. Pinho, P.J. Oliveira, Study of steady pipe and channel flows of a single-mode Phan-Thien–Tanner fluid, J. Non-Newtonian Fluid Mech. 101 (2001) 55–76], allowing verification of the computational technique. Subsequently, the computational algorithm is applied to the constant-volume polymer blend models of Maffettone and Minale [P.L. Maffettone, M. Minale, Equation of change for ellipsoidal drops in viscous flow, J. Non-Newtonian Fluid Mech. 84 (1999) 105–106 (Erratum), J. Non-Newtonian Fluid Mech. 78 (1998) 227–241] and Dressler and Edwards [M. Dressler, B.J. Edwards, The influence of matrix viscoelasticity on the rheology of polymer blends, Rheol. Acta 43 (2004) 257–282; M. Dressler, B.J. Edwards, Rheology of polymer blends with matrix-phase viscoelasticity and a narrow droplet size distribution, J. Non-Newtonian Fluid Mech. 120 (2004) 189–205]. Rheological and morphological properties of the model blends are thus obtained as functions of the spatial position within the channel, applied pressure drop, and shear rate at the wall.  相似文献   

5.
Many applications of viscoelastic free surface flows requiring formation of drops from small nozzles, e.g., ink-jet printing, micro-arraying, and atomization, involve predominantly extensional deformations of liquid filaments. The capillary number, which represents the ratio of viscous to surface tension forces, is small in such processes when drops of water-like liquids are formed. The dynamics of extensional deformations of viscoelastic liquids that are weakly strain hardening, i.e., liquids for which the growth in the extensional viscosity is small and bounded, are here modeled by the Giesekus, FENE-P, and FENE-CR constitutive relations and studied at low capillary numbers using full 2D numerical computations. A new computational algorithm using the general conformation tensor based constitutive equation [M. Pasquali, L.E. Scriven, Theoretical modeling of microstructured liquids: a simple thermodynamic approach, J. Non-Newtonian Fluid Mech. 120 (2004) 101–135] to compute the time dependent viscoelastic free surface flows is presented. DEVSS-TG/SUPG mixed finite element method [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on conformation tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409] is used for the spatial discretization and a fully implicit second-order predictor–corrector scheme is used for the time integration. Inertia, capillarity, and viscoelasticity are incorporated in the computations and the free surface shapes are computed along with all the other field variables in a fully coupled way. Among the three models, Giesekus filaments show the most drastic thinning in the low capillary number regime. The dependence of the transient Trouton ratio on the capillary number in the Giesekus model is demonstrated. The elastic unloading near the end plates is investigated using both kinematic [M. Yao, G.H. McKinley, B. Debbaut, Extensional deformation, stress relaxation and necking failure of viscoelastic filaments, J. Non-Newtonian Fluid Mech. 79 (1998) 469–501] and energy analyses. The magnitude of elastic unloading, which increases with growing elasticity, is shown to be the largest for Giesekus filaments, thereby suggesting that necking and elastic unloading are related.  相似文献   

6.
We describe a computational method for the numerical simulation of three-dimensional transient flows of polymer solutions that extends the work of Harlen et al. [O.G. Harlen, J.M. Rallison, P. Szabó, A split Lagrangian–Eulerian method for simulating transient viscoelastic flows, J. Non-Newtonian Fluid Mech. 60 (1995) 81–104]. The method uses a Lagrangian computation of the stress together with an Eulerian computation of the velocity field. Adaptive mesh reconnection based on Delaunay tetrahedra is used to ensure well-shaped elements. Additional shape-quality improvement procedures are developed to improve the algorithm. We validate the method for the benchmark problem of a rigid sphere falling in a cylindrical pipe. Inertia is neglected. We compare results for the axisymmetric case with previous work (using a FENE model), and then consider the off-axis non-axisymmetric case. In the latter case, we find that as the sphere falls, it drifts across the pipe, a phenomenon previously observed in experiments but not fully explained. The physical mechanisms that cause the time-dependent drift are identified, and a simple model based on the normal stresses in the fluid is shown to predict the magnitude of the drift velocity.We also consider a second benchmark problem involving a constriction in an axisymmetric pipe. Numerical difficulties associated with ill-shaped elements near the concave boundary arise for higher Weissenberg numbers. The merits and drawbacks of the new numerical method, and its applicability to various flow geometries are discussed.  相似文献   

7.
In this paper, we consider viscoelastic stresses T11, T12 and T22 arising in the stagnation flow of a dilute polymer solution; in particular, we consider an upper convected Maxwell (UCM) fluid. We present exact solutions to the coupled partial differential equations describing the viscoelastic stresses and deduce the results for the stress T22 of Becherer et al. [P. Becherer, A.N. Morozov, W. van Saarloos, Scaling of singular structures in extensional flow of dilute polymer solutions, J. Non-Newtonian Fluid Mech. 153 (2008) 183–190]. As we considered the viscoelastic stresses over two spatial variables, we are able to study the effect of variable boundary data at the inflow. As such, our results are applicable to a wider range of fluid flow problems.  相似文献   

8.
The flow of a 5.0 wt.% solution of polyisobutylene in tetradecane through a planar 4 : 1 contraction exhibiting a shear thinning viscosity is simulated using the flow-type sensitive quasi-Newtonian fluid model. The shear viscosity is fitted by the Giesekus model, which, with the chosen parameters, leads to an extension thickening elongational viscosity. The stress and velocity fields of the numerical simulations are compared with the experimental results of Quinzani et al. [J. Non-Newtonian Fluid Mech. 52 (1994) 1–36] and the numerical results of the viscoelastic simulation using the Giesekus model of Azaiez et al. [J. Non-Newtonian Fluid Mech. 62 (1996) 253–277]. It can be shown that the quasi-Newtonian fluid qualitatively predicts the essential features of the flow in the vicinity of the contraction.  相似文献   

9.
In the last few years, we have developed a fairly general adaptive finite element solution procedure which can be applied to a large variety of problems. In this paper, this strategy is briefly recalled and applied to the solution of two-dimensional viscoelastic fluid flow problems. A log-conformation formulation recently introduced by Fattal and Kupferman [R. Fattal, R. Kupferman, Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation, J. Non-Newtonian Fluid Mech. 126 (2005) 23-37] was implemented in order to improve the convergence properties of the numerical scheme. We confirm some results obtained in Hulsen, Fattal and Kupferman [M. Hulsen, R. Fattal, R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithm, J. Non-Newtonian Fluid Mech. 127 (2005) 27-39] and in some instances, we show that mesh adaptation allows to almost automatically reproduce accurate results obtained on very fine structured meshes.  相似文献   

10.
A micro–macro approach based on combining the Brownian configuration fields (BCF) method [M.A. Hulsen, A.P.G. van Heel, B.H.A.A. van den Brule, Simulation of viscoelastic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech. 70 (1997) 79–101] with an Arbitrary Lagrangian–Eulerian (ALE) Galerkin finite element method, using elliptic mesh generation equations coupled with time-dependent conservation equations, is applied to study slot coating flows of polymer solutions. The polymer molecules are represented by dumbbells with both linear and non-linear springs; hydrodynamic interactions between beads are incorporated. Calculations with infinitely extensible (Hookean) and pre-averaged finitely extensible (FENE-P) dumbbell models are performed and compared with equivalent closed-form macroscopic models in a conformation tensor based formulation [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on the conformation tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409]. The BCF equation for linear dumbbell models is solved using a fully implicit time integration scheme which is found to be more stable than the explicit Euler scheme used previously to compute complex flows. We find excellent agreement between the results of the BCF based formulation and the macroscopic conformation tensor based formulation. The computations using the BCF approach are stable at much higher Weissenberg numbers, (where λ is the characteristic relaxation time of polymer, and is the characteristic rate of strain) compared to the purely macroscopic conformation tensor based approach, which fail beyond a maximum Wi. A novel computational algorithm is introduced to compute complex flows with non-linear microscopic constitutive models (i.e. non-linear FENE dumbbells and dumbbells with hydrodynamic interactions) for which no closed-form constitutive equations exist. This algorithm is fast and computationally efficient when compared to both an explicit scheme and a fully implicit scheme involving the solution of the non-linear equations with Newton’s method for each configuration field.  相似文献   

11.
The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model (vol 45, pg 823–843, 2001), J. Rheol. 45 (6) (2001) 1489] as well as its modified version [J. van Meerveld, Note on the thermodynamic consistency of the integral pom-pom model, J. Non-Newtonian Fluid Mech. 108 (1–3) (2002) 291–299] is investigated from the perspective of non-equilibrium thermodynamics, namely the General Equation for Non-Equilibrium Reversible–Irreversible Coupling (GENERIC) framework. The thermodynamic admissibility of the XPP model is shown for both its original and modified form. According to the GENERIC formalism, the parameter α introduced by Verbeeten et al. to predict non-zero second normal stress in shear flows must fulfill the condition 0  α  1.  相似文献   

12.
In this article we present a numerical method for simulating the sedimentation of circular particles in a two-dimensional channel filled with an Oldroyd-B fluid. We have combined a fictitious domain/distributed Lagrange multiplier method with a factorization approach from Lozinski and Owens [J. Non-Newtonian Fluid Mech. 112 (2003) 161] via an operator splitting technique. The new scheme preserves the positive definiteness of the conformation tensor at the discrete level. The method is validated by performing a convergence study which shows that the results are independent of the mesh and time step sizes. Our results show that when the elasticity number (E) is less than a critical value (which depends upon the blockage ratio), two particles will sediment in the channel-like particles in Newtonian fluids; when the elasticity number is greater than the critical value, chains are formed for the case of two particles sedimenting in an Oldroyd-B fluid and the center line is aligned with the falling direction. These results agree with those presented in [P.Y. Huang, H.H. Hu, and D.D. Joseph, J. Fluid Mech. 362 (1998) 297]. For the cases of three and six particles, when the elasticity number is greater than a critical value and the viscoelastic Mach number is less than one, chains are also formed and move to the center of the channel.  相似文献   

13.
We discuss properties of solutions of the Bingham flow equations for visco-plastic fluids through an eccentric annular cross-section. Particularly, we perform arguments which are not in favor of the well-known Szabo–Hassager’s conjecture that the rigid zone is confined by circles provided the eccentricity is small (J Non-Newtonian Fluid Mech 45:149-169, 1992).  相似文献   

14.
A numerical simulation of multiple flexible fibers in suspension in Newtonian simple shear flow is presented. The method used is similar to those of previous recent simulation works by Fan et al. [J. Non-Newtonian Fluid Mech. 74 (1998) 113] and Yamane et al. [J. Non-Newtonian Fluid Mech. 54 (1994) 405], however, the method has been modified to allow a small amount of bending and torsion in the fibers. A restoring moment acts to straighten the fibers as they interact in the flow.It is demonstrated that this simulation can be used to extract basic rheological information about the suspension including fiber orientations and suspension viscosity. The viscosity of semi-concentrated to concentrated flexible fiber suspensions are shown to increase by a magnitude of the order 7–10% greater than the equivalent rigid fiber suspension tested. This is in qualitative agreement with previous experimental work by Goto et al. [Rheologica Acta 25 (1986) 119] and Blakeney [J. Colloid Interface Sci. 22 (1966) 324]. The implication is that any constitutive relation involving particulate suspensions described by orientation vectors may quantitatively underestimate suspension viscosity, particularly for fibers of large aspect ratio, or low Young’s modulus, whereby the tendency to flex is greater [Rheologica Acta 25 (1986) 119]. If particulate deformation were accounted for (by whatever means) in the existing constitutive relationship, predictions of bulk suspension parameters such as viscosity should be noticeably improved. A method is developed to modify an existing rigid-fiber viscosity to an equivalent flexible fiber viscosity, hence improving viscosity prediction ability.  相似文献   

15.
A newly designed eccentric cylinder device has been used to study the deformation and orientation of single Newtonian droplets immersed in an immiscible Newtonian liquid in a controlled complex flow field. Optical microscopy coupled with image acquisition analysis allows monitoring the dynamics of droplets flowing in the gap between the eccentric cylinders. Throughout the experiments, the flow intensity was kept below the critical conditions for droplet break-up. The experimental results are compared with predictions which are obtained using the transient form of the phenomenological model of Maffettone and Minale (J Non-Newtonian Fluid Mech 78:227–241, 1998; J Non-Newtonian Fluid Mech 84:105–106, 1999), incorporating a flow type parameter that accounts for the relative amount of elongational effects in the flow field and adapting the capillary number to mixed flows. For all the sub-critical flows studied here, good agreement was found between model predictions and experimental data, providing, for the first time, a quantitative assessment of drop shape predictions in complex flows.  相似文献   

16.
Recently proposed model for the film blowing process [M. Zatloukal, J. Vlcek, Modeling of the film blowing process by using variational principles, J. Non-Newton. Fluid Mech. 123 (2004) 201–213] has been generalized through assuming no constant bubble compliance and consequently used in the modeling of the high stalk tubular film blowing of the high molecular weight HDPE. It has been found that the proposed model together with standard Pearson–Petrie formulation has very good capability to describe/predict corresponding experimental data.  相似文献   

17.
We establish existence, uniqueness, convergence and stability of solutions to the equations of steady flows of fibre suspension flows. The existence of a unique steady solution is proven by using an iterative scheme. One of the restrictions imposed on the data confirms a well known fact proven in Galdi and Reddy (J Non-Newtonian Fluid Mech 83:205–230, 1999), Munganga and Reddy (Math Models Methods Appl Sci 12:1177–1203, 2002) and Munganga et al. (J Non-Newtonian fluid Mech 92:135–150, 2000) that the particle number N p must be less than 35/2. Exact solutions are calculated for Couette and Poiseuille flows. Solutions of Poiseuille flows are shown to be more accurate than those of Couette flow when a time perturbation is considered.  相似文献   

18.
Stress singularities in the neighbourhood of sharp corners can be a source of severe problems in the numerical simulation of non-Newtonian flows leading to loss of convergence with grid refinement (G.G. Lipscombe, R. Kennings and M.M. Denn, J. Non-Newtonian Fluid Mech., 24 (1987) 85 [1]). For Newtonian flows the nature of this singularity is given by the analysis of Dean and Montagnon (W.R. Dean and P.E. Montagnon, Phil. Trans. R. Soc. London, Ser. A., 308 (1949) 199 [2]) in terms of similarity solutions. In this paper we extend this similarity analysis to a suspension of rigid rods. In the limit of nearly full extension the FENE constitutive model has the same behaviour as such a suspension. Our analysis predicts the possibility of lip vortices but their behaviour is somewhat inconsistent with those observed experimentally.  相似文献   

19.
New results for the squeeze flow of Bingham plastics show the shape of the free surface in quasi-steady-state simulations, and its effect on the yielded/unyielded regions and the squeeze force. The present simulation results are obtained for both planar and axisymmetric geometries as in our previous paper [A. Matsoukas, E. Mitsoulis, Geometry effects in squeeze flow of Bingham plastics, J. Non-Newtonian Fluid Mech. 109 (2003) 231–240] and for aspect ratios ranging from 0.01 to 1. Bigger aspect ratios produce more free surface movement relative to the disk radius or plate length, but less movement relative to the gap. Planar geometries give more free surface movement than axisymmetric ones. Viscoplasticity serves to reduce the free surface movement and its deformation. In some cases of planar geometries and big aspect ratios, unyielded regions appear at the free surface, while the small unyielded regions near the center of the disks or plates are not affected. Including the free surface in the calculations of the squeeze force adds a small percentage to the values depending on aspect ratio and Bingham number. The previously fitted easy-to-use equations are corrected to account for that effect.  相似文献   

20.
We examine stability of fully developed isothermal unidirectional plane Poiseuille–Couette flows of an incompressible fluid whose viscosity depends linearly on the pressure as previously considered in Hron et al. [J. Hron, J. Málek, K.R. Rajagopal, Simple flows of fluids with pressure-dependent viscosities, Proc. R. Soc. Lond. A 457 (2001) 1603–1622] and Suslov and Tran [S.A. Suslov, T.D. Tran, Revisiting plane Couette–Poiseuille flows of a piezo-viscous fluid, J. Non-Newtonian Fluid Mech. 154 (2008) 170–178]. Stability results for a piezo-viscous fluid are compared with those for a Newtonian fluid with constant viscosity. We show that piezo-viscous effects generally lead to stabilisation of a primary flow when the applied pressure gradient is increased. We also show that the flow becomes less stable as the pressure and therefore the fluid viscosity decrease downstream. These features drastically distinguish flows of a piezo-viscous fluid from those of its constant-viscosity counterpart. At the same time the increase in the boundary velocity results in a flow stabilisation which is similar to that observed in Newtonian fluids with constant viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号