首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
《Electroanalysis》2018,30(8):1642-1652
A newly developed amperometric glucose biosensor based on graphite rod (GR) working electrode modified with biocomposite consisting of poly (pyrrole‐2‐carboxylic acid) (PCPy) particles and enzyme glucose oxidase (GOx) was investigated. The PCPy particles were synthesized by chemical oxidative polymerization technique using H2O2 as initiator of polymerization reaction and modified covalently with the GOx (PCPy‐GOx) after activation of carboxyl groups located on the particles surface with a mixture of N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). Then the PCPy‐GOx biocomposite was dispersed in a buffer solution containing a certain amount of bovine serum albumin (BSA). The resulting biocomposite suspension was adsorbed the on GR electrode surface with subsequent solvent airing and chemical cross‐linking of the proteins with glutaraldehyde vapour (GR/PCPy‐GOx). It was determined that the current response of the GR/PCPy‐GOx electrodes to glucose measured at +300 mV vs Cl reference electrode was influenced by the duration of the PCPy particles synthesis, pH of the GOx solution used for the PCPy particles modification and the amount of immobilized PCPy‐GOx biocomposite. An optimal pH of buffer solution for operation of the biosensor was found to be 8.0. Detection limit was determined as 0.039 mmol L−1 according signal to noise ratio (S/N: 3). The proposed glucose biosensor was tested in human serum samples.  相似文献   

2.
The enzymatic activity of the native and modified glucose oxidase (GOx) from Aspergillus niger in the system of reversed micelles of Aerosol OT in octane was investigated. Two forms of the modified enzyme were studied: a hydrophobized form obtained by the attachment of palmitic chains to lysine amino groups by the reaction with palmitic acid ester of N-hydroxysuccinimide and a glycosylated (hydrophilized) form obtained by the attachment of the cellobiose moieties. The native glucose oxidase and its derivatives, while incorporated into micelles in a surfactant concentration range from 0.05 to 0.3 M, display an enzymatic activity, which is comparable with the activity in aqueous solution. The dependence of the enzymatic activity on hydration degree of surfactant (the molar ratio of water to surfactant, W0) does not indicate the formation of qualitatively new associated forms of the enzyme subunits inside the micelles. The apparent size of Aerosol OT micelles obtained by dynamic light scattering gradually increases from 10±3 nm at low W0 up to 25±5 nm at high W0. Incorporation of the native and hydrophobized glucose oxidase into micelles does not affect their mean size. Kinetic analysis shows that the enzyme specificity is about an order of magnitude greater in the system of reversed micelles as compared with aqueous solution.  相似文献   

3.
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H2O2, the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 μM and an apparent Michaelis–Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples.  相似文献   

4.
Multi‐walled carbon nanotubes (MWNTs) were dispersed in the ionic liquid [BMIM][BF4] to form a uniform black suspension. Based on it, a novel glucose oxidase (GOx)‐hyaluronic (HA)‐[BMIM][BF4]‐MWNTs/GCE modified electrode was fabricated. UV‐vis spectroscopy confirmed that GOx immobilized in the composite film retained its native structure. The experimental results of EIS indicated MWNTs, [BMIM][BF4] and HA were successfully immobilized on the surface of GCE and [BMIM][BF4]‐MWNTs could obviously improve the diffusion of ferricyanide toward the electrode surface. The experimental results of CV showed that a pair of well‐defined and quasi‐reversible peaks of GOx at the modified electrode was exhibited, and the redox reaction of GOx at the modified electrode was surface‐confined and quasi‐reversible electrochemical process. The average surface coverage of GOx and the apparent Michaelis‐Menten constant were 8.5×10−9 mol/cm2 and 9.8 mmol/L, respectively. The cathodic peak current of GOx and the glucose concentration showed linear relationship in the range from 0.1 to 2.0 mmol/L with a detection limit of 0.03 mmol/L (S/N=3). As a result, the method presented here could be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

5.
XU  Jiming  HAN  Wenxia  YIN  Qifan  SONG  Jie  ZHONG  Hui 《中国化学》2009,27(11):2197-2202
The direct electrochemistry of glucose oxidase (GOD) was achieved based on the immobilization of GOD on a natural nano‐structural attapulgite (ATP) clay film modified glassy carbon (GC) electrode. The immobilized GOD displayed a pair of well‐defined quasi‐reversible redox peaks with a formal potential (E0′) of ?457.5 mV (vs. SCE) in 0.1 mol·L?1 pH 7.0 phosphate buffer solution. The peak current was linearly dependent on the scan rate, indicating that the direct electrochemistry of GOD in that case was a surface‐controlled process. The immobilized glucose oxidase could retain bioactivity and catalyze the oxidation of glucose in the presence of ferrocene monocarboxylic acid (FMCA) as a mediator with the apparent Michaelis‐Menten constant Kappm of 1.16 mmol·L?1. The electrocatalytic response showed a linear dependence on the glucose concentration ranging widely from 5.0×10?6 to 6.0×10?4 mol·L?1 (with correlation coefficient of 0.9960). This work demonstrated that the nano‐structural attapulgite clay was a good candidate material for the direct electrochemistry of the redox‐active enzyme and the construction of the related enzyme biosensors. The proposed biosensors were applied to determine the glucose in blood and urine samples with satisfactory results.  相似文献   

6.
Electron transfer (ET) reactions in bioelectrocatalysis of enzymes at electrode surfaces require not only the efficient immobilization, but also highly conductive nanostructured platform, which allows for retaining its bioactivity and structural conformation. The novel architecture of spatially separated electrochemically reduced graphene oxide (ERGO) by multi‐walled carbon nanotubes functionalized with 4‐(pyrrole‐1‐yl) benzoic acid (MWCNT/PyBA) with the accurate porous structure could be an alternative for earlier approaches to the construction of bioelectrocatalytic systems with rapid diffusion of reagents from the solution to the enzyme molecule. The formation of ERGO/MWCNT/PyBA system was confirmed by electrochemical, spectroscopic and microscopic methods. The cyclic voltammetry experiments revealed that the presence of ERGO in the conductive material affects the electronic communication between the enzyme molecule and modified electrode surface greatly improving its ET properties resulting in a double increase of the heterogeneous ET rate constant value (ks=6.5 s?1). The fabricated glucose oxidase based biosensor sensitively detects glucose, therefore, ERGO/MWCNT/PyBA architecture could provide a novel and efficient platform for immobilization of redox enzymes.  相似文献   

7.
The negatively charged (at pH 8.2) glucose oxidase (GOx, pI ca. 4.2) was assembled onto the surface of single-walled carbon nanotubes (SWNT), which was covered (or wrapped) by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA), via the electrostatic interaction forming GOx-PDDASWNT nanocomposites. Fourier transform infrared (FTIR), UV-Vis and electrochemical impedance spectroscopy (EIS) were used to characterize the growth processes of the nanocomposites. The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor (Nafion-GOx-PDDA-SWNT/GC) was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon (GC) electrode using Nafion (5%) as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid (FcM) as an electroactive mediator with a good stability, reproducibility and higher biological affinity. Under an optimal condition, the biosensor could be used to detection of glucose, presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of KM^app ca. 4.5 mmol/L, with a linear range of the concentration of glucose from 0.5 to 5.5 mmol/L (with correlation coefficient of 0.999) and the detection limit of ca. 83 μmol/L (at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L. The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes (proteins), biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

8.
A novel glucose biosensor has been fabricated and employed as the amperometric detector of a capillary electrophoresis (CE) system. (±)-1-Ferrocenylethylamine and chitosan were successively modified on a 500-µm diameter disc platinum electrode by dip-coating. The modified electrode was subsequently immersed in glucose oxidase (GOx) solution to entrap the enzyme in the chitosan membrane. The primary amino groups of 1-ferrocenylethylamine, GOx, and chitosan were cross-linked by glutaraldehyde to obtain a biosensing membrane so as to reduce leaching of 1-ferrocenylethylamine and GOx. The electrochemical behavior of the target biosensor was investigated. It was demonstrated that the investigated biosensor features fast response, high stability, long lifetime, and ideal compatibility with the CE system. When CE was employed to introduce a glucose plug into the surface of the biosensor, the current response was linear to the glucose concentration in the range of 0.0025 to 2.5 mM with a detection limit of 1.2 µM (S/N = 3) at a working potential of +0.6 V (vs. SCE). The CE-biosensor system was applied to the determination of the glucose level in human serum. The results were satisfactory and in good agreement with the hospital assay results.  相似文献   

9.
A high-performance amperometric glucose biosensor was developed, based on immobilization of glucose oxidase (GOx) on a copper (Cu) nanoparticles/chitosan (CHIT)/carbon nanotube (CNT)-modified glassy carbon (GC) electrode. The Cu and CNT had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide in the matrix of biopolymer CHIT. The Cu/CHIT/CNT modified GC electrode could amplify the reduction current of hydrogen peroxide greatly. Besides, the Cu/CHIT/CNT modified GC electrode reduces hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents. With GOx as an enzyme model, a new glucose biosensor was fabricated. The sensitivity of the sensor is due not only to the large microscopic area but also to the high efficiency of transformation of H2O2 generated by enzymatic reaction to current signal. The biosensor exhibited excellent sensitivity (the detection limit is down to 0.02 mM), fast response time (less than 4 sec), wide linear range (from 0.05 to 12 mM), and perfect selectivity. Correspondence: Wanzhi Wei, State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China  相似文献   

10.
利用多壁碳纳米管(MWCNTs)和氧化锌(ZnO)纳米棒复合物膜构建了一种新的电流型葡萄糖生物传感器。MWCNTs-ZnO复合物在超声协助下通过静电配位的方式产生。其中,ZnO纳米棒的存在加强了该复合物催化氧化H2O2的能力,增加了响应电流。与单一的MWCNTs和ZnO相比,这种纳米复合物显示了更为有效地电催化活性。在此基础上,我们以MWCNTs-ZnO复合物膜为基底,用戊二醛交联法固定葡萄糖氧化酶,电聚合邻苯二胺(PoPD)膜为抗干扰层,构建了抗干扰能力强,稳定性好,灵敏度高,响应快的葡萄糖传感器。在+0.8V的检测电位下,该传感器对葡萄糖响应的线性范围为5.0×10-6~5.0×10-3mol·L-1(R=0.997),检测限为3.5×10-6mol·L-1(S/N=3),响应时间小于10s的葡萄糖生物传感器,常见干扰物质如抗坏血酸和尿酸不影响测定。  相似文献   

11.
A simple and effective glucose biosensor based on immobilization of glucose oxidase (GOD) in graphene (GR)/Nafion film was constructed. The results indicated that the immobilized GOD can maintain its native structure and bioactivity, and the GR/Nafion film provides a favorable microenvironment for GOD immobilization and promotes the direct electron transfer between the electrode substrate and the redox center of GOD. The electrode reaction of the immobilized GOD shows a reversible and surface‐controlled process with the large electron transfer rate constant (ks) of 3.42±0.08 s?1. Based on the oxygen consumption during the oxidation process of glucose catalyzed by the immobilized GOD, the as‐prepared GOD/GR/Nafion/GCE electrode exhibits a linear range from 0.5 to 14 mmol·L?1 with a detection limit of 0.03 mmol·L?1. Moreover, it displays a good reproducibility and long‐term stability.  相似文献   

12.
A simple, one-step process, using 0.25Mp-benzoquinone dissolved in 20% dioxane at 50°C for 24 h was applied to the activation of polyacrylamide beads. The activated beads were reacted with glucose oxidase isolated fromAspergillus niger. The coupling reaction was performed in 0.1M potassium phosphate at pH 8.5 and 0–4°C for 24 h. The protein concentration was 50 mg/mL. In such conditions, the highest activity achieved was about 100 U/g solid. The optimum pH for the catalytic activity was shifted by about 1 pH unit in the acidic direction to pH 5.5. Between 35 and 50°C, the activity of the immobilized form depends on the temperature to a smaller extent than that of the soluble form. Above 50°C, the activity of immobilized glucose oxidase shows a sharper heat dependence. The enzyme-substrate interaction was not profoundly altered by the immobilization of the enzyme. The heat resistance of the immobilized enzyme was enhanced. The immobilized glucose oxidase is most stable at pH 5.5. The practical use of the immobilized glucose oxidase was tested in preliminary experiments for determination of the glucose concentration in blood sera.  相似文献   

13.
In this article, poly[poly(ethyleneglycol) acrylate] (polyPEG‐A) with mercaptothiazoline ester terminal group was synthesized directly by reversible addition fragmentation chain transfer (RAFT) polymerization using a mercaptothiazoline ester functional RAFT agent. The functional polyPEG‐A was then conjugated to glucose oxidase (GOx) via surface‐tethered amino groups through covalent amide coupling. Sorensenformaltitration assay revealed that GOx retained ~14 free amino groups available for covalent modification. The conjugation reaction turned out to be efficient and mild. Colorimetric method was applied to evaluate the enzymatic activity of native GOx and its derivatives by introducing another enzyme, horseradish peroxidase. The modified GOx with polymeric chains exhibited reduced enzymatic activity toward the catalytical oxidation of glucose, but with significantly increased thermal stability and elongated lifetime. When GOx was modified with polyPEG‐A [molecular weight (MW), 45,000; polydispersity index, 1.12] the enzymatic activity was decreased to 37 U/mg, only 29% left. However, when incubated at 25 °C the modified GOx still retained 9.6% of its original bioactivity after 60 days, whereas the native GOx only lived for 29 days. The more polymer chains or the longer polymer chain attached, the more reduction of the enzymatic activity resulted, however, the longer the lifetime of the enzyme obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.

Pyrrole functionalized polystyrene (PStPy) was copolymerized with pyrrole to obtain a conducting copolymer, P(PStPy‐co‐Py) which is used as the immobilization matrix. Glucose oxidase and polyphenol oxidase enzymes were immobilized via the entrapment method by electrochemical polymerization. Enzyme electrodes were prepared by electrolysis at a constant potential using sodium dodecyl sulfate (SDS) as the supporting electrolyte during the copolymerization of PStPy with pyrrole. Maximum reaction rates (Vmax) and enzyme affinities (Michaelis‐Menten constants, Km) were determined for the enzyme entrapped both in polypyrrole (PPy) and P(PStPy‐co‐Py) matrices. Optimizations of enzyme electrodes were done by examining the effects of temperature and pH on enzymes' activities along with the shelf life and operational stability investigations. Glucose oxidase enzyme electrodes were used for human serum analysis and glucose determination in two brands of orange juices. Polyphenol oxidase enzyme electrodes were used for the determination of phenolics in red wines of Turkey.  相似文献   

15.
A new approach to constructing an enzyme-containing film on the surface of a gold electrode for use as a biosensor is described. A basic multilayer film (BMF) of (PDDA/GNPs) n /PDDA was first constructed on the gold electrode by electrostatic layer-by-layer self-assembly of poly(diallyldimethylammonium chloride) (PDDA) and gold nanoparticles (GNPs). Glucose oxidase (GOx) was then sorbed into this BMF by dipping the BMF-modified electrode into a GOx solution. The assembly of the BMF was monitored and tested via UV-vis spectroscopy and cyclic voltammetry (CV). The ferrocenemethanol-mediated cyclic voltammograms obtained from the gold electrode modified with the (PDDA/GNPs) n /PDDA/GOx indicated that the assembled GOx remained electrocatalytically active for the oxidation of glucose. Analysis of the voltammetric signals showed that the surface coverage of active enzyme was a linear function of the number of PDDA/GNPs bilayers. This result confirmed the penetration of GOx into the BMF and suggests that the BMF-based enzyme film forms in a uniform manner. Electrochemical impedance measurements revealed that the biosensor had a lower electron transfer resistance (R et) than that of a sensor prepared by layer-by-layer assembly of PDDA and GOx, due to the presence of gold nanoparticles. The sensitivity of the biosensor for the determination of glucose, which could be controlled by adjusting the number of PDDA/GNPs bilayers, was investigated.  相似文献   

16.
《Electroanalysis》2017,29(6):1532-1542
Glucose oxidase (GOx) is an enzyme, which is used for the development of enzymatic biofuel cells. Therefore in this research redox competition mode of scanning electrochemical microscopy (RC‐SECM) was applied for the investigation of glucose oxidase (GOx) catalyzed reaction kinetics. The GOx was immobilized by glutaraldehyde on substrates of different electrical conductivity: (i) gold covered glass was used as conducting substrate and (ii) plastic poly(methyl methacrylate) was used as non‐conducting substrate. Current vs distance dependencies were registered by SECM at different concentrations of glucose in the absence of redox mediator. The potential of −750 mV vs Ag/AgCl(3 M KCl) was applied to the microelectrode (ME), which was used as a probe in SECM, in order to register oxygen reduction current. Consumption of oxygen by the GOx based layer was evaluated according to principles determined by Michaelis‐Menten kinetics. Apparent Michaelis constants K M (app.) were calculated from the dependencies of current vs glucose concentration. In both these cases the K M (app.) value increased when the distance between ME and enzyme modified surface was increasing from 10 to 30 μm, while the K M (app.) value decreased by increasing the distance from 30 to 60 μm.  相似文献   

17.
《Analytical letters》2012,45(13):1157-1165
Abstract

Acidification of a solution of glucose oxidase in 35 percent glycerol with 10 percent sulfuric acid and a gel filtration of this acidified glucose oxidase solution yielded apo-glucose oxidase with low residual enzyme activity. Further treatment with charcoal gave apo-glucose oxidase which is devoid of enzyme activity. Using this apo-glucose oxidase, it was possible to measure flavin adenine dinucleotide amperometrically at extremely low concentrations (10?12 M) with ease, rapidity, and convenience.  相似文献   

18.
Reagentless, oxygen-independent glucose biosensors based on an Os-complex-modified polypyrrole matrix and on soluble PQQ-dependent glucose dehydrogenase from Acinetobacter calcoaceticus are described.As the soluble form of glucose dehydrogenase from Acinetobacter calcoaceticus is a hydrophilic enzyme with a positive net charge, its entrapment into the positively charged hydrophobic polypyrrole film is much more complicated than that of the corresponding membrane enzyme or the negatively charged and very stable glucose oxidase. Possible ways for using soluble PQQ-dependent glucose dehydrogenase in combination with conducting polymer films are seen in the modulation of the enzyme properties by covalent binding of suitable compounds to the protein shell together with the adjustment of the properties of the conducting polymer film. This can be done by neutralising the net charge of the protein and/or optimising the electron-transfer pathway between enzyme and electrode surface by covalent binding of suitable redox relays to the protein surface.In addition, methods for increasing the hydrophilicity of the polymer film, such as the co-entrapment of high-molecular weight hydrophilic additives and copolymerisation of hydrophilic pyrrole derivatives are presented. It is demonstrated that the replacement of the parent monomer pyrrole by a suitable hydrophilic pyrrole derivative facilitates the entrapment of the modified soluble PQQ-dependent glucose dehydrogenase into the Os-complex-modified polymer and hence allows for the development of reagentless biosensors.  相似文献   

19.
姚慧  李楠  徐景忠  朱俊杰 《中国化学》2005,23(3):275-279
本文选用生物相容性好的壳聚糖作为基体材料,使其与戊二醛交联成网状结构包埋葡萄糖氧化酶制成电化学传感器。这种壳聚糖膜不仅可以减小葡萄糖氧化酶的流失,而且能为酶提供了适宜的微环境。用红外光谱、紫外光谱及透射电镜对膜的形态和性质进行了表征。实验结果表明该传感器具有很快的响应速度,很好的稳定性和重现性,能选择性地催化葡萄糖并测定其浓度。该传感器的制备方法简单,成本低,于冰箱中放置两周信号保持在90%以上,对葡萄糖测量的线性范围为1×10-5 - 3.4×10-3mol•L-1,当信噪比为3:1时检测限为5×10-6mol•L-1。  相似文献   

20.
将制备的铁氰酸镍纳米颗粒(NiNP)与多壁碳纳米管(CNT)混合, 分散于壳聚糖溶液中, 形成一种新的纳米复合成分(NiNP-CNT-CHIT), 将其修饰在玻碳电极表面. 新复合膜体现了NiNP和CNT之间的协同作用, 由于CNT的良好的传递电子性能, 促使NiNP催化氧化还原能力有了较大的提高. 此NiNP-CNT-CHIT复合膜修饰的玻碳电极在较低电位下对过氧化氢具有良好的电催化性能, 与NiNP-CHIT膜比较, 测定H2O2的灵敏度增大了50倍. 通过戊二醛在电极表面固定葡萄糖氧化酶制备了一种新的葡萄糖传感器. 该传感器在-0.2 V下对葡萄糖的线性范围为0.05~10 mmol/L, 检测下限为10 μmol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号